Most-Often-Needed 1953
 Volume 13

RADIO

DIAGRAMS

 and Servicing InformationCompiled by
M. N. BEITMAN

SUPREME PUBLICATIONS
CHICAGO

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ITDCD

Always use this Index to find needed material in this Volume 13, 1953 RADIO Diagram Manual. You will find the various makes of radios listed in alphabetical order by manufacturer's name. Under each make, models or chassis are listed in numerical order at the left of the column, while the corresponding page numbers are given at the right.

Admiral Corp.
4X1
4X11
4X12
4X18
4X 19
4 Y 1
4Y11
4Y 12
4 Y 18
4Y19
5C3
5D3
5D31
5D32
5D33
5E3
5E31.
5E32
5E33
5E38
5E39
5S21AN 7
5S22AN 7
5S23AN 7
5 X 210
5X21 10
5X22 10
5X23 10
RC600 11-16
Airline, see
Montgomery W
Arvin Industries
RE-323 19
RE-327 20
RE-343 22
$651 \mathrm{~T} \quad 19$
655SWT 20
751TB,-TM 22

Buick
$981320 \quad 141$
$981321 \quad 142$
Capehart
TC-62 24
CR-70 23
CR-71 24
CR-76 26
RP-152 23
$213 \quad 25$

T-522 26
CBS-Columbia
511
27
512
27
515, -A 27
516A 27
517A 27
$525 \quad 28$
$526 \quad 28$
$540 \quad 28$
Chevrolet
$986668 \quad 30$
98666929

Coronado
35RA2-43-5101
page 42
Crosley Corp.

5F	31
F-5CE	31
F-5IY	31
F-5MY	31
F-5RD	31
$10 E$	32
$10 E-1$	32
E10BE	32
E10CE	32

Crosley, cont.

E10RD	32
E10WE	32
75 E	33

$\begin{array}{ll}\mathrm{E}-75 \mathrm{CE} & 33 \\ \mathrm{E}-75 \mathrm{GN} & 33\end{array}$
E-75RD 33
E-75TN 33
85E 33
E-85CE 33
E-85GN 33
$\begin{array}{ll}\text { E-85RD } & 33 \\ \text { E-85TN } & 33\end{array}$
$90 \mathrm{E} \quad 33$
E-90BK 33
E-90CE 33
E-90GY 33
E-90RD 33
E-90WE 33
100F 34

F-100BE 34
F-100BK 34
F-100CE 34
F-100GN 34
F-100RD 34
110F 34
F-110BE 34
F-110BK 34
F-110CE 34
F-110GN 34
F-110RD 34
Delco, see
United Motors
Emerson
705A, -B 35
718B 36
724B 37
725A 38
729B 39

Emerson, cont.
737A, -B 40
738B $\quad 36$
$744 \mathrm{~B} \quad 41$

120149A 38
120150B 36
120151B 37
$120155 \mathrm{~A},-$ - 35
120170B 39
120172A, -B 40 120175B 41

Gamble-Skogmo 35RA 2-43-5101A page 42
Gem Radio
see Jewel Radio

General Electric

412	44
514	46
542	46
543	46
546	43
547	43
548	43
549	43
614	45
615	45

Hallicrafters
AT-1 47
AT-2 47
AT-3 47
ATCL-5 48
ATCL-6 48
ATCL-7 48
ATCL-8 48
ATX-11 49
ATX-12 49
ATX-13 49

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Jewel Radio	
5125	50
5200	50
5250	50
5310	51
Majestic	
5C2	51
5C3	51
5LA 7	52
5LA8	52
5LA50	52
5LA60	52
Montgomery- Ward \& Co. $\begin{array}{r} 25 \mathrm{GSG}-2016 \mathrm{~A} \\ \text { page } 53 \end{array}$	
Motorola	la, Inc.
NH3C	72
52 C 1	55-56
52C1A	55
52 CW 1	57-58
52CW2	57
52CW3	57
52CW4	57-58
52L1A	59-60
52L2A	59
52L3A	59
52R11 61	61 to 63
52R12	61
52R 13	61
52R 14	61
52R 15	61
52R 16	61
53 LC 1	64-65
53LC2	64
53LC3	64
62 Cl	66-67
62 Cl 1 A	66-67
62 C 2	66
62 C 2 A	66
62 C 3	66
62 C 3 A	66
62 CW 1	68-69
62X21	70-71
HS-289	61-63
HS-289A	A 61
HS-299	66-67
HS-309	55-56
HS-324	68-69
HS-326	70-71
HS -329	57
HS-347	64-65
HS-357	59-60
403	73-74
412	73
503	75
821	76
Nash (Auto)	
NH3C	72

Oldsmobile		RCA, continued	
- 982990	143	15-E	104
983004	144	15-E1	104
		RS-139A	104
Olympic Radio		RS-142	104
$9-435 \mathrm{~V}$	77-78	RS-142A	104
9-435W	77	RC-1080C	100
		RC-1080D	100
Packard-Bell		RC-1085B	101
621	54	RC-1115	95
		RC-1117D	99
Philco Cor	Corp.	RC-1118	97
M-24 8	89 to 94	RC-1119	98
53-560	80	RC-1120	96
53-561	80	RC-1120A	96
53-562	80	RC-1120B	96
53-563	80	$\mathrm{RC}-1120 \mathrm{C}$	96
53-564	80	RC-1121	102
53-565	80	RC-1121A	102
53-566	79	930409105	-116
53-568	80		
53-651	81	Sears, Roe	buck
53-652	81	2003	120
53-656	82-83	2004	120
53-658	82-83	2005	120
53-700	84	2006	120
53-701	84	2028	117
53-701X	- 84	2200	118
53-702	84	2202	118
53-706	84	2203	118
53-707	84	2215	119
53-800	85	2217	119
53-804	85	2218	119
53-950	85	3210	121
53-952	85	528.229	118
53-954	85	528.230	117
53-956	86-87	528.238	119
53-1350	88	528.241-1	121
		528.259	118
Pontiac		757.110	120
$984817 \quad 145$			
		Sentinel Radio	
RCA-Victor		1 U-343	122
2BX63	95	1 ${ }^{\top}$ - 344	123
2C511	97	$1 \mathrm{C}-345 \mathrm{P}$	127
2C521	96	1 $\mathrm{C}^{\text {' }}$-346	124
2ES31	104	1U-347P	125
2ES31E	104	1 ${ }^{\circ}-348 \mathrm{P}$	126
2ES31Q	104	343	122
2ES38E	104	344	123
2ES38Q	104	345P	127
2R51	98	346	124
2R52	98	347 P	125
2S7	99	348 P	126
2X61	100		
2 X 62	100	Silvertone, see	
2X621 101		Sears, Roebuck	
2XF91 102			
2XF931 102		Sparton	
2XF932	102	4E3	128
2XF933	102	5B3	129
2XF934	102	5B3C	129
2XF935	102	5C3	130

Sparton, cont.	
301	128
305	128
309	128
320C	129
321 C	129
325C	129
329C	129
342	130
345	130
349	130
360	129
361	129
365	129
369	129
Stewart-Warner	
9165-A	A 131
9165-B	B 131
Sylvania Electric	
1-601-2	-2 134
1-601-3	-3 134
1-602-2	-2 133
1-602-3	-3 133
1-604-1	-1 135
433	135
513	134
543	133
563	134
593	133
Tele-King Radio	
RD-1	136
RE-1	137
REP-1	138
RE-2A	- 139
Trav-ler Radio	
5300	140
5301	140
Truetone, see Western Auto	
United Motors	
981320	141
981321	142
982990	143
983004	444
984817	145
986668	30
986669	- 29
Webster-Chicago	
121	147
122 14	147-160
123	147
124	147
125	147

Western Auto	
9AF 25 B	B 163
D-1234B	B 161
D-2205	162
D-2214A	A 162
D-2226A	A 163
D-2255	164
D-2325A	A 165
D-2383	166
Westinghouse	
H-378T5	5167
H-379T5	T5 167
H-380T5	5 167
H-381T5	T5 167
H-382T5	5168
H-383T5	T5 168
H-385T5	5169
H-386T5	5169
H-387T5	5169
H-388T5	5169
H-400P4	4170
H-401P4	4170
H-402P4	4170
H-403P4	4170
V-2157-10	-10 168
V-2157-11	-11 169
V-2157-12	-12 169
V-2164-2	-2 170
V-2184-1	-1 167
Zenith Radio	
4K01	179
4K40	180
4L02	183
4L40 180	180-181
4L4 1	184
4L42	182
5K04	185
5L4 1	186
6K03	187
6L03	187
7K01	192
7L05 -188	-188-189
8L21 190	190-191
K-401	180
L-401 180	180-181
L-403F, G	, G 184
L-403R, Y	, Y 184
L-406	182
K-412	179
L-505	186
K-526W, Y	W, Y 185
K-622, F	F 187
K-622G, W	G, W 187
L-622F, G	F, G 187
L-622W	W 187
L-721 188-189	
K-725	192
L-845R	R 190
L-846E, H	E, H 190
S-9010	183
S-14053	3171

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

TUBE AND TRIMMER LOCATION

Adjustments A and (: made from underside of chassis. Adjustment F on antenna.

Solid lines show dial striuging and pointer position with tuning gang open. Dashed lines show pointer position (1400KC) when tuning gang is tuned to a generator signal.

- ALIGNMENT PROCEDURE

- Turn receiver volume control full on.
- Antenna must be connected and placed in the same relative position to the chassis as when in cabinet.
- Use an isolation transformer; otherwise, connect a . 1 mfd . capacitor in series with low side of signal generator and connect to chassis. Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output of signal generator necessary to produce midscale meter indication and proceed in the following sequence.
- Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Recoiver Gang Setring	Trimmer Description	Trimmer DesIgnation	Type of Adjustment
1	.001 mfd . capacitor	Tuning capacitor, antenna stator	455 KC	Gang fully apen	2nd IF lst IF	$\begin{aligned} & \text { *A, B } \\ & { }^{*} \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum output
2	.001 mfd . capacitor	Tuning capacitor, antenna stator	1620 KC	Gang fully open	Oscillator	E	Maximum output
3	Loop of several turns of wire, or place generator leads close to receiver antenna for adequate signal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna	$\dagger \mathrm{F}$	Maximum output

* Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of chassis, if you use alignment tool \#98A30-7 obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug. If IF transformers have slotted tuning slugs, use an alignment tool with a blade $3 / 32^{\prime \prime}$ wide.
\dagger Antenna Trimmer " F " should be aligned after chassis and an tenna are mounted in cabinet.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Admiral

CHASSIS 5E3
MODELS 5E31, 5E32, 5E33, 5E38, 5E39

*These voltage readings will be either lower or practically zero if taken with a 1000 ohms-per-volt meter.

Adjustments A and C made from underside of chassis.

ALIGNMENT PROCEDURE

- Turn receiver volume control full on (fully clockwise).
- Use an isolation transformer if available; otherwise, connect a .1 mfd . capacitor in series with low side of signal generator and connect to chassis.
Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.
- Use lowest output of signal generator required for midscale meter indication and proceed in the following sequence.
- Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generater Freqnency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd . condenser	Antenna stator of tuning capacitor	455 KC	Gang fully open	$\begin{aligned} & \text { 2nd IF } \\ & \text { 1st IF } \end{aligned}$	$\begin{aligned} & \text { *A, B, } \\ & { }^{*} \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum output
2	250 mmfd . condenser	Antenna stator of tuning capacitor	1620 KC	Gang fully open	Oscillator	E	Maximum output

Set tuning pointer with tuning gang tuned to 1400 KC generator signal; see illustration below.
Loop of several turns of wire, or place generator lead close to receiver loop for adequate

No actual
connection (signal by radiation)

1400 KC
Tune in generator signal

Maximum output
*Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of the chassis, if you use alignment tool \#98A30- $\overline{-}$ obtainable from your Admiral distributor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug. If IF transformers have slotted head tuning slugs, use an alignment tool with a blade $3 / 32^{\prime \prime}$ wide.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ALIGNMENT

- Turn receiver volume control full on (fully clockwise).
- Use an isolation transformer if available, otherwise connect a .1 mfd . condenser in series with low side of signal generator and connect to chassis.
Caution: Do not connect a ground wire directly to chassis.
- Connect output meter across speaker voice coil.

PROCEDURE

- Use lowest output setting of signal generator capable of producing adequate output meter indication and proceed in the following sequence.
- Use a NON-METALLIC alignment tool for IF transformers. See asterisk * note below.
- Repeat adjustments to insure good results.

Step	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Gemerafor Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjustment
1	250 mmfd. condenser	Antenna stator of tuning condenser	455 KC	Gang fully open	$\underset{\text { lst IF }}{\text { 2nd }}$	$\begin{aligned} & \text { *A, B } \\ & { }^{*} \mathrm{C}, \mathrm{D} \end{aligned}$	Maximum output
2	250 mmfd. condenser	Antenna stator of tuning condenser	1620 KC	Gang fully open	Oscillator (on gang)	E	Maximum output
3	Loop of several turns of wire, or place generator lead close to receiver antenna for adequate aignal pickup.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna (on gang)	F	Maximum output
*Adjustments A and C made from the underside of the chassis. To avoid splitting the slotted head of the powdered iron core tuning slugs in IF transformers, use an alignment tool having a blade $1 / 8^{\prime \prime}$ wide.							

10
*These voltage readings will be either lower or practically zero if taken with a 1000 ohm-per-volt meter.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Figure 1. RC600 Record Changer, Top View.
This Admiral record changer will automatically play-
twelve of the 10 -inch, 78 or 33 RPM records, or
ten of the 12 -inch, 78 RPM records, or
twelve of the 12 -inch, 33 RPM records, or
fourteen of the 7 -inch, 45 RPM records, or
ten of the 7 -inch, 33 RPM records.
The push-off is built into the record changer centerpost and operates automatically during the regular change cycle.

The tone arm set-down point is automatically selected during change cycle immediately after the first record drops to the turntable. The set-down index finger at the edge of the turntable rises momentarily to determine the correct set-down position for the tone arm.

SETTING THE SPEED SELECTOR KNOB: Correct turntable speed may be selected by sliding the speed selector pointer to the position indicated for 33,78 or 45 RPM. See figure 2.

Figure 2. RC600 Record Changer Control Panel.

LOADING AND STARTING: Remove needle guard which protects phonograph needle during shipment. Select a stack of records of same size and speed. Grasp the leveling arm at the shaft end and lift it to clear the top of the centerpost. Swing the leveling arm coward the tone arm where it is out of the way of records.

Figure 3. Loading Records.
Place the stack of records on the centerpost. Then, swing the leveling arm back over the centerpost and lower it on the record stack with the centerpost extending up through the opening. See figure 3.

REJECTING A RECORD: If the record changer will not trip into change cycle at the end of a record, or if you wish to stop playing a record and start playing the next one, merely slide the reject pointer to the "REJ" position momentarily.

STOPPING AND UNLOADING: Do not switch off the record changer or handle the tone arm during the change cycle. This record changer may be stopped manually only after the changer is out of change cycle and has begun playing a record. The tone arm may be carefully lifted off the playing surface of the record and placed on the tone arm rest at the side of the changer pan. Slide the reject pointer to the "OFF" position to stop the turntable. To restart, repeat procedure described for starting and operating the record changer.

This record changer will automatically switch off power to the turntable motor after the last record has played and the tone arm returned to the tone arm rest.

Grasp the leveling arm at the shaft end and lift it to clear the top of the centerpost. Swing the leveling arm toward the tone arm where it is out of the way of records. Lift the stack of records off the centerpost. (Continued on the next 7 pages.)

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS
 ADMIRAL, Continued CHANGE CYCLE

Abstract

When following this change cycle, keep in mind that a velocity type trip is used, which depends upon a rapid movement of the tone arm toward the centerpost. Note that the Push-off, Trip, and Set-Down mechanisms function independently.

If. at all possible, observe the change cycle of a record changer which is operating properly. It is a good idea to rotate the turntable by hand and repeat the change cycle until the function of each part is understood.

The changer operates as follows: The turntable is driven by the motor idler wheel (56), riding against its inside rim. The speed of the turntable is determined by the diameter of the shaft (either 78 RPM, 45 RPM, or 33 RPM) driving the idler wheel rubber tire (56).

The 78 RPM drive shaft is part of the motor armature. The 33 RPM drive shaft (51) and the 45 RPM drive shaft (52) are moved in and out of position mechanically by the speed selector link (34). See figure 6.

The changer mechanism is driven during its change cycle by the drive gear (42), which in turn is driven by the geared hub of the turntable. During normal record play, the "dead spot" on the drive gear is held next to the turntable hub by the gear indexing arm (39) and spring (40).

VELOCITY TRIP

This changer employs a velocity trip, consisting primarily of two parts: the trip motion arm (44), and the gear engagement pawl (46). These parts are mounted near the "dead spot" on the drive gear. See figure 4A.

During normal record play, the trip slider (49) is moved slowly by the stud on the tone arm control lever (64) which moves with the tone arm. The stud on the trip slider (49) rides against the trip motion arm (44), moving it very slightly. Since the gear engagement pawl (46) is held against the trip motion arm (44) by the trip friction washer (47), the gear engagement pawl (46) is also moved slightly toward the turntable hub. Since this movement is only slight, the vertical catch on the gear engagement pawl (46) is just touched and "kicked away" by the lug on the turntable hub. This occurs with each revolution of the turntable until the gear engagement pawl is moved in rapidly enough to position in front of the lug for the next turntable cycle.

This rapid movement only occurs when the trip slider (49) is moved rapidly, by the tone arm, as the needle enters the trip grooves of the record. The gear engagement pawl (46) then moves in front of and engages the lug on the turntable hub. This causes the drive gear (42) to be rotated far enough so that the teeth on the drive gear will engage the teeth on the turntable hub, starting the change cycle. See figure 4B.

The changer can also be tripped by sliding the reject pointer to the "REJ" position momentarily. The stud on the end of the reject arm (35) moves the gear engagement pawl (46) into position to engage the lug on turntable hub.

As the drive gear begins to rotate, the drive eccentric (82) also rotates, since both parts are mounted on the same shaft. See figure 6. As the drive eccentric rotates clockwise, the drive link (75) pivots the control plate (71). As the control plate pivots, the inclined cut-out moves from beneath the tone arm lift rod (65), raising the tone arm from the record. The safety arm (73) travels with the control plate (71). The stud on the safety arm engages the tone arm control lever (64) and moves the tone arm away from the centerpost.

PUSH-OFF

When the tone arm is clear of the turntable, the roller on the drive eccentric (82) engages the push-off link (84). The push-off link moves the push-off lever (85) which engages the push-off adjustment nut (92) on the end of the push-off shaft in the centerpost. As the pushoff link is moved by the drive eccentric, the push-off lever moves the push-off shaft up into the centerpost. The push-off shaft engages the ejector and pushes it up and out at the shelf of the centerpost. See figure 9.

As the ejector moves up, it engages the center hole of the record at the bottom of the stack on the shelf. As the ejector moves out of the centerpost, the record moves with it until the center hole is clear of the shelf of the centerpost. The record drops down the centerpost to the turntable. The balance of the stack of records is held on the shelf by the centerpost slide above the ejector.

As the drive eccentric starts into the second half of the change cycle, the push-off return spring (93) returns the push-off lever (85) and the push-off link (84) to proper position and permits the push-off ejector to return into position for push-off for the next record on the shelf of the centerpost.

SET-DOWN

After push-off and during the second half of the change cycle, the tone arm is returned to the edge of the record on the turntable. The tone arm is mounted to the tone arm control lever (64). The engagement spring (66) presses the tone arm control lever against the cork friction washer on the set-down arm (63). As the set-down arm return spring (68) draws the setdown arm toward the centerpost, the cork friction washer returns the tone arm control lever with the setdown arm.

As the control plate (71) is returned by the drive link (75), the inclined cut-out moves beneath the tone arm lift rod (65). As the tone arm lift rod descends into the inclined cut-out, the tone arm is lowered to the record.

The SET-DOWN INDEX (69) automatically determines the correct set-down position of the tone arm for each record size. An index finger with a stepped rubber cap extends above the changer pan momentarily to de-

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Model RC600

termine the size of the first record to be played. An index pin on the set-down arm (63) engages with the set-down index (69). As the long stud on the safety arm (73) moves the set-down arm (63), the index pin on the set-down arm releases the set-down index and permits it to pivot of its own weight and lift the index finger to the edge of the turntable.

A 7-inch record cannot obstruct the index finger. Therefore, the set-down index will pivot its full distance to the position which will permit the index pin on the set-down arm to enter the proper index slot for 7-inch set-down. The set-down arm return spring (68) draws the set-down arm toward the centerpost and the index pin on the set-down arm travels in to the end of the index slot. Since the index pin is held in the index slot against moving further toward the centerpost, the index slot will determine where set-down occurs.

A 10 -inch record will extend past the edge of the turntable approximately $1 / 2$ inch; the lower step of the index finger cap momentarily "feels" the edge of the record. The index finger cannot rise as high as it was when no record obstructed its rise, thus the set-down index is positioned to permit the index pin on the set-down arm to enter the index slot for 10 -inch set-down.

A 12 -inch record extends approximately $11 / 4$ inches beyond the edge of the turntable. Thus, the index finger rises just slightly since the top step momentarily "feels" the record and the setdown index cannot lower enough to permit the index pin in either the slot for 7 -inch or 10 -inch set-down. As the set-down arm returns, the setdown index will hold the index pin in the proper position for 12 -inch set-down for the tone arm.

Figure 4A. Position of Drive Gear Oot of Chonge Cycle.

ADMIRAL, Continued AUTOMATIC SHUT-OFF
After the last record of the stack on the shelf has been ejected to the turntable, the leveling arm (26) drops about $3 / 16$ of an inch beneath the shelf. The bottom end of the leveling arm shaft extends beneath the changer pan and will lower the shut-off delay stop (80). The shut-off link control arm on the shut-off link (76) is then permitted to pivot with the shut-off arm spring (77) fastened at its other end to the control plate (71). The shut-off link control arm will draw the shut-off link and engage its cam that positions the shut-off link in line with the stud on the reject arm (35).

As the shut-off link (76) is drawn toward the control plate (71), the stop on the shut-off link moves into the path of the stud on the tone arm control lever (64).

When the control plate (7l) begins to return in the second half of the change cycle, a stud on the control plate moves the shut-off link (76) to snap off the phonograph motor switch (99) and return the control knob lever (23) to "OFF".

Figure 5. RC600 Record Changer with Turntable Removed.
Figure 6. Bottom View, Changer Out of Cycle.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS ADMIRAL, Continued

The tone arm control lever (64) is held by the tone arm stop on the shut-off link (76) while the control plate (71) is going through the second half of the

Model RC600

change cycle; the tone arm is held suspended above the tone arm rest (29). As the inclined cut-out moves under the tone arm lift rod (65), the tone arm is lowered onto the tone arm rest.

ADJUSTMENTS

When making the following adjustments, keep in mind that the Push-off, Trip, and Set-Down mechanisms function independently.

VELOCITY TRIP MECHANISM

This record changer uses a velocity type trip, which depends upon a rapid movement of the tone arm toward the centerpost in any area between $27 / \mathrm{s}^{\prime \prime}$ to $7 / 8^{\prime \prime}$ from the center of the record. This trip requires no adjustment. However, in order for the changer to trip properly, there must be sufficient friction between the trip motion arm (44) and the gear engagement pawl (46). Friction may be increased by placing a very slight amount of a silicone lubricanton the fibre washer (45). If necessary, replace the trip friction washer (47). See Figure 4A.

SET-DOWN ADJUSTMENT

The set-down adjustment may be made while the changer is in its compartment or cabinet. Adjustment of the set-down point is made by adjusting the set-down adjusting screw (6). See Figure 7. The tone arm will automatically set-down properly on 7 -inch or 12 inch records if the set-down adjustment is made properly on a 10 -inch record. The set-down adjusting screw is accessible through the hole in the left side of the tone arm. Turning this screw out (counterclockwise) moves the set-down point of the tone arm closer to the centerpost, and turning this screw in (clockwise) moves it away from the centerpost.

Be sure the record changer is level. Make the set-down adjustment as follows:

1. Grasp the leveling arm at the shaft end and swing the arm from the centerpost to its stop above the tone arm rest.
2. Place a standard 10 -inch, 78 RPM record on the turntable.
3. When operating the record changer out of its cabinet, the television line cord with the interlock socket (Admiral part number 89A22-1) may be used as an adapter for power at the phonograph motor plug.
4. Slide the reject pointer to the "REJ" position momentarily and let it return to "ON". The changer will begin its automatic cycle. Slide the reject pointer to the "OFF" position so that the turntable will stop after set-down has begun, but before the needle has touched the record.
5. Place a ruler against the centerpost and measure the distance between the near side of the centerpost and the needle. This distance should be between 4-10/16" and $4-11 / 16^{\prime \prime}$.
6. When the 10 -inch adjustment is correct, the needle should set-down between $5 \cdot 19 / 32^{\prime \prime}$ and $5 \cdot 22 / 32^{\prime \prime}$ from the near side of the centerpost on 12 -inch rec. ords, and between $31 / 4^{\prime \prime}$ to $3-5 / 32^{\prime \prime}$ on 7 -inch records.
7. Check the set-down point with each size of record. "Touch-up" set-down adjustment until the set-down has been optimized for all record sizes.

Figure 7. Set-Down and Lift Adjustments.

ADJUSTING THE TONE ARM LIFT

Be sure the record changer is level. The tone arm lift adjustment may be made while the changer is in its compartment or cabinet. The tone arm lift adjusting screw (12) is accessible through a hole on the top of the tone arm at the tone arm base. See figure 7. If the tone arm lift is too great, that is, the tone arm touches the record at the bottom of the stack on the shelf of the centerpost, turn the lift adjusting screw counterclockwise. If the tone arm lift is not great enough to pass above a stack of 12 standard $10^{\prime \prime}, 78$ RPM records on the turntable, turn the lift adjusting screw clockwise.

When the changer is not in change cycle, the end of the needle should be approximately $1 / 4^{\prime \prime}$ above the changer pan. Lift the tone arm off the tone arm rest and let it suspend over the surface of the changer pan between the tone arm rest and the edge of the turntable escutcheon. See figure 8. The distance between the end

Figure 8. Checking Tane Arm Lift.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS
 Model RC600

of the needle and the surface of the changer pan may be conveniently measured by passing an ordinary pencil between the needle and the pan.

When the changer is in change cycle, the needle must be approximately $13 / 8^{\prime \prime}$ above the surface of the turntable; the tone arm must pass over 12 standard $10^{\prime \prime}$, 78 RPM records.

PUSH-OFF ADJUSTMENT

Push-off adjustment must be checked whenever the centerpost has been removed or changed. Record push-off is accomplished by means of an ejector and push-off shaft built into the centerpost. During change cycle, the ejector and push-off shaft are moved by the push-off lever (85). If ejector travel is not sufficient for record push-off, adjustment may be required.

Ejector travel is adjusted by the hexagonal adjustment nut (92). With proper push-off adjustment, the ejector should extend just slightly beyond the edge of the shelf on the centerpost. See figure 9.
Additional travel must be allowed for the pushoff shaft and ejector after the push-off lever (85) has moved its full distance.

To adjust the push-off, proceed as follows:

1. Rotate the turntable by hand. Slide the reject pointer to "REJ" position and let it return to "ON".
2. Continue rotating turntable slowly until the roller on the drive eccentric (82) engages the push-off link (84). Rotate turntable until the roller has moved the link its full distance. The push-off lever (85) is now extended its maximum travel.
3. Check the position of the ejector at the shelf of the centerpost. The ejector should extend just beyond the edge of the shelf. See figure 9. If the ejector does not extend beyond the edge of the shelf, turn the push-off adjustment nut (92) counterclockwise to increase the amount of push-off. Use a $1 / 4^{\prime \prime}$ open-end wrench for this adjustment.
CAUTION: The push-off adjustment nut has been specially slotted to stay tight on the push-off shaft after adjustment is made. Do not turn the nut all the
way on the push-off shaft; this will spread the slots and allow the nut to turn out of adjustment.
4. Press the hexagonal adjustment nut (92) to check for additional travel before the push-off shaft stops. The ejector should move out past the shelf slightly more than necessary for push-off before it stops.
5. Slide a 15 thousandths of an inch (.015) feeler gauge" between the flat surface of the adjustment nut (92) and the push-off lever (85) to check and adjust until gauge passes freely.
NOTE: The additional travel for the push-off shaft may vary, of course, in order to obtain proper pushoff. However, the clearance of 15 thousandths of an inch (. 015) must not vary more than plus or minus 5 thousandths.

Figure 9. Adiusting for Correct Push-Off.

RECORD CHANGER TROUBLE SHOOTING

Records Do Not Push Off Or More Than One Record Drops To The Turntable.

1. Check for broken or weak ejector return spring in the centerpost.
2. Check for weak push-off return spring (93).
3. Check the push-off adjustment. See figure 9.
4. Check that no foreign material is between the record shelf and the ejector in the centerpost.

Changer Causes Rumble Or Noise.

1. BE SURE that the shipping screws (21) on each side of changer pan have been removed.
2. Check for any mechanical rub near the motor.
3. Check for broken float spring (104).
4. Be sure plastic escutcheon is securely held to changer pan by the four mounting screws.

* A dollar bill folded three times (eight thicknesses) will closely approximate 15 thousandths of an inch.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ADMIRAL, Continued

REF. No.	PART No.	DESCRIPTION
1	403C 60	Tone Arm
	$\left\{\begin{array}{l} 409 \text { A } 13 \\ 409 A 13.1 \end{array}\right.$	Pickup Cortridge with Needle ond Knurled Nut Pickup Cortridge with Needle (push-in type)
2	409A 13-2	Cortridges (with needle) ore interchangeoble Pickup Cortridge (export type) with Neadle and Knurled Nu:
3	\{98A 15-19	Needle for 409A13 Cortridge
	298A 15.18	Needle for 409Al3-1 Cartridge
4	1A 72-1.20	Cortridge Mig. Screw Shokeproof Type 25 (2 req.)
5	G400A 529-1	Tone Arm Leod ond Pin Jock Assembly
6	45-750.C2-47	Set-Down Adjusting Screw, \#4-40x3/4 BMS
7	405 A 137	Set-Down Adjusting lock Spring
8	G400A 611	Tone Arm Mtg. ond Pivot Plote Assembly
9	28 10-5.59	Speed Nut (2 req.)
10	404A 40	Tone Arm Counterweight
11	1A 70-6-20	Counterweight Mig. Screw, \#4x5\% (2 req.)
12	402A 290	Lift Adjusting Screw
13	405A 148	Liff Adjusting Spring
14	406A 27	Index Finger Rubber Cap
15	401A 355-1	Retoining Ring (12 req.)
16	414 A 48	Pivot Shoft
17	G400A 610	Tone Arm Mount and Hub (includes Allen Se: Screw)
18	402A 296	Allen Set Screw, \#8-32x3/16 (2 req.)
19	403C 61	Tone Arm Plostic Base Assembly fincludes beorings)
20	13A 2-8.57	Snap-In Buttons
21	103-1750-F2-52	"Held-Down" Screw, \# 10-32×13/4 (for shipping only)
22	403A 63	Plostic Control Pointer (Maroon) (2 req.)
23	401A 385	Control Knob lever (2 req.)
24	402A 342	Control Knob Mtg. Screw, \#4x1/4 PHST (2 req.)
25	760-187-C2-57	Screw, \#6.32 $3 / 16$, BH (includes lock wosher) (2 req.)
26	G400B 625	Leveling Arm Assembly
27	405A 150	Leveling Arm Relurn Spring
28	401A 355-3	Retoining Ring (2 req.)
29	403A 65	Tone Arm Rest
30	2B10-40-59	Speed Nut (3/16)
31	403D 64	Plostic Escutcheon (Gold)
32	1A 26-54-57	Screw (for mig. Esc.) \# 2x ${ }^{1 / 4}$
33	G400B 602	Turntoble
34	G400^ 607	Speed Selector Link Assembly
35	G400A 608	Switch ond Reject Arm Assembly
36	4A 5-19-0	Spring Wosher
37	401A 388	Flot Wosher (6 req.)
38	405A 140	Reject Arm Return Spring; Shut-Off Link Return Spring
39	G400A 620	Geor Indexing Arm ond Stud Assembly
40	405A 147	Geor Indexing Spring
41	4 C 2-178-0	Flot Wosher (5 req.)
42	G400A 587	Drive Geor ond Stud Assembly
43	402A 292	Trip Pivot Hub
44	401A 351.1	Trip Motion Arm
45	412436	Fibre Wosher
46	401A 352	Geor Engogement Pawl
47	401A 366	Trip Friction Washer
48	401A 355-6	Retoining Ring
49	G400A 575	Trip Slider
50	98A 15.9	Oil Retoining Felt Wosher (2 req.)
51	98A 15.10	33 RPM Drive Shoft (60 cycles)
52	98A 15-11	45 RPM Drive Shaft (60 cycles)
53	406A 20	Drive Bell (2 req.)
54	98A 15-21	Idier Wheel tie lug
55	98A 15-20	Idler Wheel Spring
56	G400A 279	Idler Wheel Assembly

Model RC600

PARTS LIST

REF. No.	PART No.	DESCRIPTION
57	412A 30	Fibre Washer
58	405A 15	Idier Wheol Retoining Clip
59	401A 396 -4	Retaining Ring
60	405A 149	Sat-Down Pivot Retoining Spring
61	401A 396-5	Retoining Ring
62	415A 34	Spacer Wosher
63	G400A 616	Set-Down Arm Assembly
64	F400A 615	Tone Arm Control Lever ond Shoff Assembly
65	402A 284	Lift Rod
66	405A 144	Engogement Spring
67	4B1-67-47	Wosher (. $196 \times 5 / 16 \times 1 / 32$)
68	405A 146	Sat-Down Arm Raturn Spring
69	G400A 618	Set-Down Index Assembly
70	405A 143	Sel-Down Index Refurn Spring
71	G400A 621	Control Plote Assembly
72	401A 355-2	Retoining Ring
73	G400A 622	Sofety Arm ond Stud Assembly
74	405A 145	Sofety Spring
75	401A 375	Drive Link
76	g400A 629	Shut-Off Link ond Arm Assembly
77	405A 151	Shut.Off Arm Spring
78	405A 152	Cam Return Spring
79	401A 355.7	Retoining Ring
80	401 A 398	Shut-Off Deloy Stop
81	405A 153	Shut-Off Deloy Stop Engogement Spring
82	G400A 605	Drive Eccentric Assembly
83	285-250-C2-47	Screw, \#8-32x ${ }^{1 / 4}$ BH (includes lack wosher)
84	4014379	Push-Off tink
85	G400A 603	Push-Off Lever and Stud Assembly
86	4B1-88.47	Washer (.196x $3 / 5 \times 1 / 32$)
87	4048 41	Turntable Hub Support and Shaft (less Allon set screw)
88	1A 70.10.47	Screw, Self-tapping, \# $6 \times 3 / 2$ (3 req.)
89	415A 31	Drive Geor Beoring
90	405A 99	Retaining Ring
91	415A 29	Turntable Thrust Beoring
92	402A 277	Push-Off Adjustment Nut
93	405A 142	Push-Off Shoft Return Spring
94	G400B 601	Centerpost Assembly (includes 92 and 93)
95	402A 263	Screw, Self-Topping, \#6x\%/ (3 req.)
96	948.2	Tone Arm teod Clomp
97	414A 49	Shut-Off Link. Hald-Down
98	1A 27-53-47	Screw, Self-tapping, \#6x3/16 (4 req.)
99	G400A 606	Switch ond Mig. Plate Assembly
100	$\left\{\begin{array}{l} 407 \mathrm{C} 20 \\ 407 \mathrm{C} 20-1 \\ 407 \times 20-4 \end{array}\right.$	-3-Speed Motor Complete, 117 V ., 60 cycles 3-Speed Mator Complete, 117V., 50 cycles 3 -Speed Motar Complete, 230V., 50 cycles
101	406A 19	Mator Grommet
102	401A 355.4	Retoining Ring
103	406A 24	Speed Selector tink Grommet
104	$\left\{\begin{array}{l} 19 \mathrm{~A} 10-3 \\ 405 \mathrm{~A} 139 \end{array}\right.$	Floot Spring, $1 / \mathbf{s}^{\prime \prime}$ high (3 req.) Floot Spring, $1 / 4 /{ }^{\prime \prime}$ high (3 req.)
105	10B $1-18$	Terminol Boord
106	413 A11.1	Audio Cable, $15^{\prime \prime}$ (includes plug)
107	G400D 627-1	Chonger Pon Assembly (Gold)
108	48A B-2	45 RPM Record Adopters
109	$\left\{\begin{array}{l} 96818-8-10-0 \\ 34 E 60-1 \\ 34 E 80-2 \end{array}\right.$	Plostic Tubing, $11 / 2^{\prime \prime}$ Plastic Bose (Ebony) far RP601 Plostic Base (Mohogony) for RP602

PARTS FOR CONVERTING 407C20 MOTOR FOR 50 CYCLES

" 407 C 20 motor is not used on "Conodion Admirol" chong-
ers. For Conodian Admirol replocement motors order:
$\{60$ cycle, 105 to 125 volts
25 cycle, 105 to 125 volts. 407Y 20-25

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Model RC600

ADMIRAL, Continued

RC600 RECORD CHANGER, EXPLODED VIEW

To find part number and description for any part, locate part and reference number in illustration. Then, find reference number in list on opposite page.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ADMIRAL, Continued

SERVICE AND REPAIR

LUBRICATION

DO NOT apply GREASE to the TRIP SLIDER (49). Under normal operating conditions, the motor should never require lubricating. When lubricating the changer, keep oil or grease away from turntahle.

Before lubricating the set-down index (69), see figure 10. Grease or oil must not exist at certain points of the set-down index. This assembly must be clean and dry at these points in order to pivot freely of its own weight.

Friction between the gear engagement pawl (46) and the trip motion arm (44) may be increased by placing a very slight amount of a silicone lubricant such as Cosmolube \#l (Admiral part number 418A50) on the fibre washer (45). Lubriplate \#107 or vaseline petroleum jelly may be used as a substitute here, but, be sure others parts are free of oil or grease and dirt.

The shaft for the leveling arm (26) must be free of binding in its bearing in the tone arm base. Dry graphite powder perferably should be used to lubricate the shaft; graphite oil or a light machine oil may be used as a substitute here.

The oilite bearing in the turntable hub and the tone arm base should be lubricated with SAE No. 20 oil. Oil used here must be fluid in order that it may penetrate and be absorbed by the bearing material. Never use grease of any kind.

Other points of movement throughout the record changer should be cleaned and lubricated with Cosmolube \#l whenever the changer is serviced. A good automobile chassis lubricant may be used as a substitute.

Use carbon tetrachloride and remove any oil or grease which may be on the idler wheel tire, inside rim of the turntable, the rubber drive belts, or the rubber grommets.

REMOVING AND REPLACING TURNTABLE

CAUTION: Attempting to pry the turntable out of the changer pan will damage the plastic escutcheon. Do not remove the escutcheon to remove the turntable.

Remove the changer from its compartment or cabinet. Then, proceed as follows:

1. Remove the "E" retaining ring* at the top of the turntable hub.
2. Grasp leveling arm at shaft end and lift and swing arm aside.
3. Place the changer so that the front edge with the control panel is to the right. The tone arm base should be at the far left hand corner.
4. Grasp the changer pan between the palms of both hands and extend the fingers over the turntable.
5. Invert the changer pan and allow the turntable to drop into the fingers of both hands. Use care when removing the turntable to prevent losing the turntable thrust bearing (91).
6. Before replacing the turntable, be sure the rim of the turntable and the idler wheel tire are clean. Use carbon tetrachloride to remove finger marks, etc.
7. Do not force the turntable to engage the idler wheel with the turntable rim. Always move the idler wheel by moving the idler wheel slide which is accessible from the underside of the changer pan through the opening for the turntable motor. See figure 6. Do not handle the rubber tire on the idler wheel or at tempt to pry the idler wheel with any tools.

REPLACING SET-DOWN INDEX (69)

Although the set-down index is factory assembled and requires no adjustment, some care is required when it is being replaced. The top surface of the set-down index bracket mounts to the changer pan and is positioned by two $1 / 3$ inch diameter half-punches which interlock in holes in the changer pan. A \#6-32 machine screw secures the set-down index in place. See figure 10.

Figure 10. Set-Down Index Assembly.

REPLACING THE CENTERPOST

The centerpost is held in the turntable hub by an Allen set screw. The milled flat at the lower end of the centerpost (just above the push-off return spring) must be aligned with this set screw. The lower edge of the retaining ring groove on the centerpost must be flush with the top surface of the turntable shaft to within 5 thousandths of an inch above after the Allen set screw is tightened to hold the centerpost in place.

Whenever the centerpost has been removed or replaced, the push-off adjustment must be checked. The push-off adjustment nut on the push-off shaft is pre-adjusted at the factory and is ready for installation and final adjustment is made after centerpost is installed.
CAUTION: The push-off adjustment nut is slotted to stay tight on the push-off shaft after adjustment is made. Do not turn the nut all the way on the the push-off shaft; the slots will spread and allow the nut to turn.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS Arvin industries inc.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Arvin Industries Model 655 SWT, Chassis RE-327

ALIGNFAENT PROCEDURE

AM Tuning range- 540 Kc to 1600 Kc . Intermediate Frequency - $\mathbf{4} 55 \mathrm{Kc}$. I.F. and R.F. measurements made ar 500 milliwatts output-approximately 1.27 volts on a rectifier type voltmeter connected across speaker voice coil.
Aoproximately input for 500 MV output: R.F. with standard loop: at $600 \mathrm{Kc}, 480 \mathrm{uv} / \mathrm{m}$, at $1000 \mathrm{Kc}, 360 \mathrm{uv} / \mathrm{m}$; at $1400 \mathrm{Kc}, 240 \mathrm{uv} / \mathrm{m}$.
PRELIMINARY:
Output meter connection..
Ourput meter reading to indicate $\mathbf{5 0 0}$ MV .. 1.27 volts
Generator Modulation... 30%, 400 cycles
Position of volume control.
Fully clockwise
Set band switch.
To left for AM alignment, to right for SW alignment
AM Alignment

Position of Variable	Generator Frequency	Dummy Ant.	(high) Generator Connection	Generator Connection Ground Lead	Adjust Trimmer In Order Shown For Max. Output	Trimmer Function
Open	455 Kc	. 05 mid.	Mirer Grid	Floating Grnd.	A1, A2, A3, A4,	I.F.
Open	1670 Kc		Test Loop	Test Loop	X6	Oscillator
Clased	535 Kc		Test Loop	Test Loop	A5	Osc. Pad.
1400 Kc	1400 Kc		Test Loop	Test Loop	17	Antenn:
600 Kc	600 Kc		Test LOOP	Tese Loop	A5	Osc. Pad.

Connect generator lead to a Standard Hazeltine Test Loop, Model 1150, place two feet from the set loop, or three turns of wire about six inches in diameter, placed about one foot from the ser loop.
The alignment procedure should be repeated in the original order for greatest accuracy. Always keep the output from the signal generator at its lowest possible value to make the A.V.C. action of the receiver ineffective.

SHORT WAVE R.F.
A. Before attempting short wave alignment, the Broadcast IF Alignment procedure must be completed.

1. Turn band switch clock wise to Short Wave position.
B. Connect the Signal Generator to the antenna terminals (hank disconnected). A 50 MMF "Dummy" must be used in the "high-side" of the generator-lead and the generator "groundlead" connects directly to the ground-terminal.
2. In aligning the short wave band some trouble may be experienced with image frequencies. The image frequency is separated from the desired frequency by a 910 Kc difference. In order to identify which signal is being picked up, use the following procedure to assure the receiver oscillator is above the incoming signal:
a. With variable condenser completely open and the trimmer, A8, loose set the signal generator to 18 Mc. Then gradually tighten the trimmer until a signal is heard. This is the correct frequency. Now if the variable condenser is closed slightly, another signal will be picked up. This is the image frequency and must not be confused with the above desired frequency. This relationship must be maintained throughout the following balancing procedure. The image frequency must always be found by closing the variable a slight amount.
3. Set generator to 6 Mc . The set must tune to maximum output slightly before variable is completely closed.
4. Set Generator to 16 Mc . Rotate variable until the 16 Mc signal is heard at two points near the open position of the variable. Again the desired signal is the one with the va riable open the farthest. Adjust the trimmer, A9, as for maximum outut. Rotate variable very slightly for a new maximum and repeak trimmer A9. Repeat this operation until no further incr ease can be obtained.

Part Number	Schematic Location Description		Part Numher	Schematic Location Description	
Capacitors			D25844	L. 1	Antenna loop
C20067-473	C10, 11	Capacitor, 047 mfd , 200 V	B22953		Antenna loop mig. brkt.
C20068-103	C14	Capacitor, $.01 \mathrm{mfd} ., 400 \mathrm{~V}$	A25838		Antenna terminal board
C20068-473	C16,17,		123237		Carton
	18	Capacitor, 047 mfd ., 400 V	C22963	R7	Control, volume \& switch
C20067-103	C13	Capacitor, . 01 mfd ., 200V	A25873	CP1	Couplate
C20065-470	C5	Capacitor, 47 mmf	A19132		Dial Cord (10 for)
C20065-101	C4	Capacitor, 100 mmf	19133		Dial Cord Spring (10 for)
C20065-221	C12	Capacitor, 200 mmf	E40080		Dial crystal
C23099-562	C7	Capacitor, 5600 mmf	A19351		Dial light bulb
A25830	C15	Capacitor, electrolytic	A19628-2		Dial light socket
C25834	C3A, B	Capacitor, variable	AC23302-5		Dial Plate Assembly
A25832	C1, 8, 9	Caacitor, Trimmer	A19361		Hairpin clip (10 for)
Resistors			140474		I.F. Mtg. clip (5 for)
C20061-151	R9	Resistor, 150 ohm	C20138-15		Line cord \& plug
C20061-101	R4	Resistor, 100 ohm	AC25871-1	L3	Oscillator coil B.C.
C20061-102	R3	Resistor, 1000 ohm	AC25843-1	L.4	Oscillator coil S.W.
C20223-122	R8	Resistor, 1200 ohm 2w 10\%	C23461-1		Pointer Snap fasteners (10 for)
C20061-223	R2	Resistor, 22 K ohm	A19124		Snap fasteners (10 for) Socket, tube
C20061-334	R10	Resistor, 330 K ohm	A20243-3		
C20061-105	R1	Resistor, 1 megohm	$\mathrm{A}^{\text {C20243-1 }}$		Socket, tube plain
C20061-225	R5	Resistor, 2.2 megohm	C25756	SPK	Speaker Stud, flapper (10 for)
C20061-475	R6	Resistor, 4.7 megohm	$\begin{aligned} & \mathbf{A} 22941 \\ & \mathbf{C} 25831 \end{aligned}$		Switch, band
Cabinet			C25859		Switch band mig. brkt.
R23228-5		Cabinet, Sea-Mist	C21797-6	T1, T2	Transformer I.F.
C23299		Cabinet, rear cover	AC25868-1	T3	Transformer, gutput
A24464-5		Knob, Sea-Mist	A25832		Trimmer assembly
Miscellaneo			A22957-1		Tuning shaft
AC25843-1	L2	Antenna coil S.W.	A25156		Tuning shaft brkt.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Arvin industries

D ADIO 655 SWT ICHASSIS RE 327

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Capehart-Farnsworth Corp. Model C-62, Chassis CR-71, continued.

TC-62 ALIGNMENT INSTRUCTIONS

Equipment required:

1. Calibrated R.F. Signal Generator (Signal from 455 KC to 1620 KC)
2. Low Range Output Meter.

Alignment:

a. Turn set on, adjust volume to maximum.
b. See that dial pointer coincides with calibration marks at extremes of dial scale.
c. Connect output meter across speaker voice coil.

Step No.	Set R.F. Generator At	Connect Generator To	Set Gang Condenser To	Adjust	To Obtain
1	455 Kc .	Antenna section of Gang Condenser	Fully open. Disable osc. section of tuning gang.	$\begin{aligned} & \text { I.F. slugs } \\ & \text { T103 } \\ & \text { T104 } \end{aligned}$	Max.
2	1620 Kc.	Antenna section of Gang Condenser	Fully open.	Ose. Trimmer C103D	Max.
3	537 Kc .	Antenna section of Gang Condenser.	Fully closed.	Osc. Coil T102	Max.
4	1500 Kc.	Antenna section of Gang Condenser	1500 Kc.	Mixer Trimmer C103E	Max.
5	600 Kc.	Antenna section of Gang Condenser	600 Kc.	Mixer Coil T101	Max.
6	1500 Kc.	Loosely couple to Loop antenna	1500 Kc.	$\begin{aligned} & \text { Antenna } \\ & \text { Trimmer } \\ & \text { C103F } \\ & \hline \end{aligned}$	Max.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Model 525-526

I. F. 455 KC.

Snap fiber battery clip into position on the "B" Battery (Ray-O-Vac No. 4367, General No. W45A, National Carbon No. 467 or equivalent) and place it in position as shown in illustration. Next, plug the "A" Battery Connector into the "A" Battery (National Carbon No. 713 or Ray-O-Vac No. P551 or equivalent) and place it in position by turning the battery clamp and slipping the battery into its location as shown in the illustration.

NOTE-Diagram has Eveready numbers.

Model 540

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

CHASSIS 5F
MODELS: F-5CE, F-5IY, F-5MY, F-5RD

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Crostiy

MODELS: E1OBE, E1OCE, EIORD, EIOWE
(Chassis 10E, 10E-1)

Alignment Sequence	Signal Generator Output			Position of Dial pointer	Adjust for Maximum Out put
	Frequency in KC	In Series with	To		
1	455	200 mmf .	High Side of Loop	1620	A, B, C \& D
2	1620	Radiated to Loop		1620	E
3	1400	Radiated to Loop		Tune toSignal	F

41 F. 455 kc
${ }^{5}$ if chassis ch COMmon wirimg

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS CROSLEY CHASSIS 90E
Models: E-90WE, E-90CE, E-90GY, E-90RD, E-90BK
Chassis 85E
Models: E-85 CE, E-85 RD, E-85 GN, E-85 TN
Models: E-75 CE, E-75 RD, E-75 GN, E-75-TN

1 OUTLET
MAXIMUM
CLOCK

TO LOOP ANTENNA LOOP ANTENNA
OUSIDE OF LOOP
OUTSIOE OF LOOP
CHASSIS - TOP VIEW

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

CHASSIS 100F

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

RESISTANCE READINGS FOR CHASSIS 120155-A AND 120155-B

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN	7
V-1	1R5	26	3.5 K	18 K	95 K	26	3 MEEG	42	
$\mathrm{V}-2$	144	42	3.5 K	3.5 K	3.5 K	42	3.8 BEEG	55	
V-3	1 H	0	1 MEG	4 MEG	1 MEG	12 L	10 NEG	26	
V-4	3V4	55	4 K	3.5 K	420	62	3.2 MEG	72	
V-5	SELENIUM	RECTIFIER							

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS Emerson Radio

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS Emerson Radio
 MODEL - 725A
 CHASSIS - 120149-A

DISASSEMBLY INSTRUCTIONS

1. Remove two push-on knobs at front of cabinet.
2. Disconnect phono-motor leads by unscrewing wirenuts.
3. Remove phono pickup plug.
4. Unscrew two front cabinet feet and two chassis bolts at sides of cabinet. Lift out chassis.
5. Remove two base plate screws at center of chassis.

CONDITIONS FOR VOLTAGE AND RESISTANCE READINGS

1: Voltages indicated are positive d.c., resistances are in ohms, unless ot herwise indicated.
2. Measurements made with voltohmyst or equivalent.
3. Line voltage maintained at 117 volts a.c. for voltage measurements.
4. Socket connections are shown as bottom views, with measurements from pin to common negative.
5. Volume control at maximum, for voltage measurements.
6. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.
7. On the diagram, upper values are voltage and lower values are resistance. NC denotes no connect ion, k is kilohms, MEG is megohms, INF is infinity. Resistances marked * are measured to pin 8 of rectifier (BH^{+}).

VOLTAGE \& RESISTAMCE READIMGS FOR CHASSIS 120149-A

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS Emerson Radio =...

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS Emerson Radio

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Gamble Shogme, Enc.

CORONADO RADIOMODEL 35RA2-43-5101A

IF Alignment:

1. Connect the hot lead of the signal generator through a .10 mfd . capacitor to Pin 7 of the converter (6BE6) tube. Apply a 400 cycle, 30% modulated carrier of 455 KC at about 150 microvolts.
2. Set the volume control at maximum and adjust the top and bottom cores of the first and second IF transformers (T4. and T5) for maximum output, as indicated on the output meter. Keep signal generator level low.

RF Alignment:

1. Set the signal generator to 1620 KC and turn tuning control fully counter-clockwise.
2. Adjust oscillator trimmer C8 for maximum deflection.

3. Disconnect the hot signal generator lead and $\mathbf{. 1 0}$ mfd capacitor and reconnect to the antenna jack through a 50 mmf capacitor.
4. Set the signal generator to 1300 KC and tune in the receiver for maximum reading on output meter. Keep signal generator level low.
5. Adjust antenna and R.F. trimmers C3 and C4 for maximum reading.

DIAL CDRD REPPLACEMENT

1. Turn the tuning shaft counterclockwise until it reaches a stop. Then turn two (2) complete turns clockwise.
2. Place dial pulley in position shown in diagram. Lug pointing toward tuning shaft.
3. Insert dial cord through hole in tuning shaft and tie a knot as indicated.
4. Make three (3) complete turns around the tuning shaft in the direction indicated on either side of the knot and route to the dial pulley.
5. Make a three-quarter ($3 / 4$) turn around the pulley in either direction and tie a knot around the lug as indicated.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS GENERAL (6) ELECTRIC

MANUAL OF 1953 MOST-OFTEN-NEEDED

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS bоtтom Sheld removal:

GENERAL ELECTRIC COMPANY

MODELS 614, 615

3. Remove the hex head screw holding bottom shield to each end of chassis.
4. Withdraw shield to position exposing chassis components.-

POWER SUPPLY:

$$
\begin{aligned}
& \text { ALL GAPACITIES ARE IN MFD. } \\
& \text { UNLESS OTHERWISE INOICATED. } \\
& \text { ALL VOLTAGES ARE D-C MEASUR- } \\
& \text { ED TO B- USING A 2O,OOO OHMS } \\
& \text { PER VOLT METER. } \\
& \text { READINGS ARE SIMILAR FOR II7 } \\
& \text { VOLTS LINE, OR BATTERY } \\
& \text { INPUT POWÉR. }
\end{aligned}
$$

For most services to the chassis such as i-f alignment, voltage measurement and component replacement it is not necessary to completely remove the radio from the cabinet. To gain access to the inside of the chassis to perform these services it is only necessary to remove the chassis bottom shield as follows:

1. Remove the hex head screw in cabinet bosses at each side of chassis.
2. Remove the three snap fasteners holding shield to back 2. Remove the of chassis.

Power line. $105 \cdot 120$ volts, D-c or 60 cps A-c
Battery
$105 \cdot 120$ volts, $\mathrm{D}-\mathrm{c}$ or $60 \mathrm{cps} \mathrm{A}-\mathrm{c}$
AB combination 9 and 90 volts Eveready 753 Bright Star 66-50 Burgess F6A60 Rayovac AB994
Power Consumption (connected to power line).
OPERATING FREQUENCIES:
Broadcast.
I-F Amplifier

\square

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS
general electric company
models 514, 542 and 543

COMPONENT REPLACEMENT- When servicing mechanized chassis, pin connections and free the components may be spared. A neater pin connections and free the components may be spared. A neater
job can be done without the risk of damage to the tube sockets
by using the following method in wiring a replacement part Cling the following method in wiring a replacement part. to the tube socket so an eye loop may be formed in the leads. Each lead of the new component may then be passed through
the proper loop, pruned to length, crimped and soldered. the proper loop, pruned to length, crimped and soldered.

GREEN
Wiring Diagram
INT. TRIMMER
(TOP) OSC. TRIMMER 35 W4 (BOTTOM) $35 W 4$
RECT.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS JEWEL RADIO CORPORATION • Model 5125

mansstrc ramo MODEL 5LA50, 5 LA60

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS Packard-Sell Company, Inc. MODEL 621

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MOTOROLA Model 52C1, Chassis HS-309, continued.

* Connect generator output across $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12" apart.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Motorola

MODELS
$52 C W 1$
$52 C W 2$
$52 C W 3$
$52 C W 4$
CHASSIS
HS-329

TRIMMERS ON GANG.
MEASUREMENT MAOE WITH GANG FULLY DPEN.
CLOCK OPERATION
The clock will start as soon as the receiver is plugged into an electrical outlet. To set the hands to the correct tion only.

AUTOMATIC RADIO OPERATION

The clock controls may be pre-set to turn the radio on
Rotate knob "C" clockwise to the desired time on the position. At the pre-set time the radio will begin to play.
If the radio has been turned on automatically and is left unattended, with knob "B" in the "AUTO" position, it will
shut off after approximately two hours. To permit conshut off after approximately two hours. To permit con-
tinuous operation, rotate knob "B" to the 'ON" position.
Alignment information continued on the next page, over.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MOTOROLA, INC.

ARIGNAENT

Chassis HS-329, continued.

NOTE: lt is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to B-through a . 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to $\mathbf{B}-$.
3. Set the signal generator for 400 cycle, $\mathbf{3 0 \%}$ modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than. 40 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 4 for adjustment locations and the following chart for procedure.

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FRECUENCY	GANG SETTING	ADJUST.	REMARKS
IF ALI $1 .$	GNMENT . 1 mf	Grid of conv. (pin 7, 12BE6)	455 Kc	Fully open	$\begin{aligned} & 1,2,3 \& 4 \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
RF AL $2 .$	GNMENT .1 mf	Grid of conv. (pin 7, 12BE6)	1620 Kc	Fully open	$5 \text { (Osc) }$	Adjust for maximum.
3.	-	Radiation loop*	1400 Kc	$\begin{aligned} & \text { Tune for } \\ & \max \end{aligned}$	6 (Ant)	Adjust for maximum.

*Connect generator output across $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep gener ator loop perpendicular to axis of and at least 12 inches from receiver iron core loop.

TO REMOVE CHASSIS FOR SERVICE

1. Pull off the two radio control knobs.
2. Remove the four screws from the back cover.
3. Pull off the back cover.
4. Disconnect the speaker leads.
5. Disconnect the three leads to the clock.

TO REMOVECLOCK FROM CABINET

1. Remove the radio chas s is as above.
2. Pull off the three clock control knobs.
3. Remove the clock dial scale.
4. Remove the three speed nuts which fasten the clock to the cabinet.
5. Remove the clock carefully, to prevent damage to its hands or face.

TO REPLACE CLOCK DIAL BACKGROUND

1. Remove the clock from the cabinet as above.
2. Carefully pull off the four hands.

FIGURE 4. TUBE AND ALIGNMENT LOCATIONS
8. Check the operation of the clock to be sure the radio turns on at the time indicated on the automatic timedial scale.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MOTOROLA Chassis HS-357, Models 52L1A, 52L2A, 52L3A, continued.

1. Connect a low range output meter across the speaker voice coil.

2. Connect the low side of the signal generator to $B-$ - osC CORE
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Move the battery saver switch to the "Hi" position.
6. Use a small fibre screwdriver for aligning the IF and diode transformers.
7. Adjust the signal generator output to produce. 40 volts (. 05 watts) across the voice coil. As stages are aligned, reduce the generator output to maintain the .40 volt level, to avoid overloading the receiver.

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREOUENCY	GANG SETTING	ADJUST	REMARKS
$\begin{aligned} & \text { IF ALI } \\ & \text { 1. } \end{aligned}$	NMENT . 1 mf	Ant section of gang (green loop lead)	455 Kc	Fully open	$\begin{array}{r} 1,2 \& 3 \\ \text { (IF cores) } \end{array}$	Adjust for maximum.
RF AL 2.	GNMENT	-	-	-	-	Attach chassis bottom cover.
3.	-	-	-	-	-	Install batteries in chassis.
4.	. 1 mf	Ant section of gang (green loop lead)	1620 Kc	Fully open	$\stackrel{4}{(\text { Osc trim) }}$	Adjust for maximum.
5.	-	Radiation loop*	1400 Kc	Tune for maximum	$\begin{gathered} 6 \\ \text { (Ant trim) } \end{gathered}$	Adjust for maximum.
6. **	-	Radıation loop*	600 Kc	Tune for maximum	$\begin{gathered} 5 \\ (\text { Osc core) } \end{gathered}$	Simultaneously tune gang and adjust core for maximum signal.
7. **	-	Radiation loop*	1620 Kc	Fully open	$\stackrel{4}{4}_{(\text {Osc } \operatorname{trim})}$	Readjust for maximum, if necessary.
8.**	-	Radiation loop*	1400 Kc	Tune for maximum	$\begin{gathered} 6 \\ \text { (Ant trim) } \end{gathered}$	Readjust for maximum, if necessary.

*Connect generator output across $5^{\prime \prime}$ diameter, 5-turn loop and couple inductively to receiver loop. Keep loops at least $12^{\prime \prime}$ apart.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Motorola

CHASSIS
HS-289 HS-289A

$52 R 11$
52R12 52R13 52R14 $52 R 15$ $52 R 16$

1. Remove the four screws which hold the back cover, and remove the cover and line cord.
2. Pull off the two control knobs from the front of the receiver.
3. Remove the Phillips head screw under the tuning knob, on the front of the recelver.
4. From the back, remove the screw which holds the line cord plug.
5. Disconnect the leads from the speaker.
6. From the back, remove the three screws which mount the chassis. CAUTION: Do not lose the insulating washers on the screws -they prevent damage to the printed circuit by the heads of the screws. See Figure 1.
7. Slide the chassis from the cabinet.

CIRCUIT DESCRIPTION
The circuit of this chassis is conventional - there are no built-in resistors or capacitors. Leads are printed on both sides of the chassis base, thereby replacing the usual connecting wires and making wiring more uniform.

Chassis HS-289A is the same as HS-289 except for the locations of electrical components

A dual 250 mmfd ceramic capacitor replaces capacitors C-3 and C-6 used in chassis HS-289.

SAFETY PRECAUTIONS

1. The chassis of this receiver is connected directly to the power line. However, the power cord circuit is broken by an interlock when the cabinet back is removed for replacing tubes. When aligning or servicing the chassis from AC, an isolation transformer should be inserted between the power line and the chassis.
2. Do not service the chassis on a metal plate, because of the possibility of a short circuit.
3. Use caution when handling the chassis with power applied, because all high voltage leads are exposed.
4. The outer edges of the chassis and the large printed areas in the center are at ground potential.

ANTENNA

Under certain circumstances, in early models, AC hum was induced into the loop antenna. This condition was corrected in later models by repositioning the loop. Figure 3 shows the revised location.

A = CHASSIS MOUNTING SCREWS

next two pages.
FIGURE 1. REAR VIEW OF RECEIVER (LATE MODEL)

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MOTOROLA, INC.
 ALIGRMENT Chassis HS-289, continued.

NOTE: If AC power is used, insert anisolation transformer between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to ground (the outer edges of the chassis) through a. 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to ground.
3. Set the signal generator for $\mathbf{4 0 0}$ cycle, $\mathbf{3 0 \%}$ modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers (a 'K-Tran" alignment tool is recommended).
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than . 40 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 2 for adjustment locations and the following chart for procedure.

ALIGNMENT GHART

STEP	DUMMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{aligned} & \text { GANG } \\ & \text { SETTING } \end{aligned}$	ADJUST	REMARKS
IF ALIC 1.	NMENT . 1 mf	Grid of conv. ($\mathrm{pin} 7,12 \mathrm{BE} 6$)	455 Kc	Fully open	$\begin{aligned} & 1,2,3 \& 4 \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
RF ALI $2 .$	GNMENT .1 mf	Grid of conv. (pin 7, I2BE6)	1620 Kc	Fully open	5 (Osc)	Adjust for maximum.
3.		Radiation loop*	1400 Kc	Tune for max	6 (Ant)	Adjust for maximum.

*Connect generator output across $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12" apart.

1. To prevent tube hreakage, remove them before replacing components. CAUTION: Remove the tubes only by pulling them straight out. Wiggling a tube may bend a socket clip, causing poor contact with the tube pin,
2. WHEN REMOVING DEFECTIVE COMPONENTS USE ONLY A SMALL SOLDERING IRON (60 WATTS OR LESS) TO AVOID DAMAGE TO THE WIRING. DO NOT USE A SOLDERING GUN. WARNING: THE LEADS ARE VERY THIN, AND EXCESSIVE HEAT WILL BURN THEM OR LOOSEN THEM FROM THE BASE MATERIAL.
3. Printed connections or leads, if damaged, may be replaced with a jumper of regular hookup wire.
4. It is recommended that iF transformers, the volume control, or the electrolytic capacitor be removed hy immersing all the lugs simultaneously into a small soldering pot. The component may then be lifted off the chassis easily. If a soldering pot is not available, heat each lug individually with a small soldering iron, and shake off as much molten solder as possible. Then, by alternately heating and loosening each lug, the entire component will be freed. ${ }^{f r e e d}$

Continued on next page.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS
MOTOROLA. Chassis HS-289, continued from the two preceding pages.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MOTOROLA, Inc.
(Continued on the next page at right)

CHASSIS
 HS-347

ALIGNMENT

MODELS 53LC1 53LC2 53LC3

NOTE: The receiver may be operated either from batteries or from the power line during alignment. If $A C$ power is used, it is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shock. If an isolation transformer is not availahle, connect the low side of the signal generator to chassis through a. 1 mf capacitor.

1. Remove chassis from cahinet. If operated from power line, during alignment, it will be necessary to TEMPORARILY place jumpers across interlockswitch before power can be applied. Jumpers are not required if battery power is used.
2. Connect a low range output meter across the speaker voice coil.
3. Connect the low side of the signal generator through a
. 1 mf capacitor to chassis.
4. Set the signal generator for 400 cycle, 30% modulation.
5. Turn the receiver volume control to maximum.
6. Use a small fibre screwdriver for aligning the IF and diode transformers.
7. Adjust the signal generator output to produce. 40 volts (. 05 watts) across the voice coil. As stages are aligned, reduce the generator output (not receiver volume control) to maintain the . 40 volt level to avoid overloading the receiver.
8. See Figure 5 for adjustment locations and the following chart for procedure.

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST	REMARKS
IF ALIGNMENT						
. 1	. 1 mf	Grid of conv. (rear stator on gang)	455 Kc	Fully open	1, 2\& 3 (IF cores)	Adjust for maximum.
RF AL $2 .$	GNMENT .1 mf	Grid of conv. (rear stator on gang)	1620 Kc	Fully open	$\begin{aligned} & 4 \text { (Osc } \\ & \text { trimmer) } \end{aligned}$	Adjust for maximum.
3.	-	Radiation loop*	1400 Kc	Tune for max	$\stackrel{5}{(\text { Ant trim) }}$	Adjust for maximum.

* Connect generator output across $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least 12" apart.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Motorola

MODELS 62C1 62 C2 $62 C 3$

MODELS 62C1A 62C2A 62C3A

CHASSIS
FS-299
(Continued on the next page, adjacent at right)

ALIGNMENT

NOTE: It is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to B through a. 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to B-.
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than. 40 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 2 for adjustment locations and the following chart for procedure.

STEP	$\begin{gathered} \text { DUMMY } \\ \text { ANTENNA } \end{gathered}$	GENERATOR CONNECTION	GENERATOR FREOUENCY	$\begin{aligned} & \text { GANG } \\ & \text { SETTING } \end{aligned}$	ADJUST	REMARKS
IF ALIGNMENT						
1.	. 1 mf	Grid of conv (RF section of gang)	455 Kc	Fully open	$\begin{aligned} & 1,2,3 \& 4 \\ & (I F \text { cores }) \end{aligned}$	Adjust for maximum.
RF ALJGNMENT						
2.	. 1 mf	Grid of conv. (RF section of gang)	1620 Kc	Fully open	5 (Osc trim)	Adjust for maximum.
3.	-	Radiation loop*	1400 Kc	Tune for \max	6 (RF trim)	Adjust for maximum.
4.	-	Radiation loop*	1400 Kc	Tune for max	$\begin{aligned} & 7 \text { (Ant } \\ & \text { trim) } \end{aligned}$	Adjust for maximum.

*Comnect generator output across 5 -inch diameter, 5 turn loop and couple inductively to receiver loop. Keep generator loop per pendicular to axis of and at least 12 inches from receiver iron core loop.

FIGURE 2. TUBE AND ALIGNMENT LOCATION
DIODE
(1) SEC TOP 455 KC
(2) PRI BOT

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MOTOROLA, Inc.

ALIGNMENT

Model 62CW1, Chassis HS-324

NOTE: It is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to B - through a. 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to B-.
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the $I F$ and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than . 40 volts (. 05 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 4 for adjustment locations and the following chart for procedure.

STEP	ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	GANG SETTING	ADJUST	REMARKS
$\begin{aligned} & \text { IF ALI } \\ & \text { 1. } \end{aligned}$	GNMENT .1 mf	Grid of conv. (pin 7, 12BE6)	455 Kc	Fully open	$\begin{aligned} & 1,2,3 \& 4 \\ & \text { (IF cores) } \end{aligned}$	Adjust for maximum.
RF AL $2 .$	GNMENT .1 mf	Grid of conv. (pin 7, 12BE6)	1620 Kc	Fully open	$\begin{gathered} 5 \\ \text { (Osc trim) } \end{gathered}$	Adjust for maximum.
3.	-	Radiation loop*	1400 Kc	Tune for max	${ }_{(\mathrm{RF} \text { trim) }}^{6}$	Adjust for maximum.
4.	-	Radiation loop*	1400 Kc	Tune for max	$\begin{gathered} 7 \\ \text { (Ant trim) } \end{gathered}$	Adjust for maximum.

*Connect generator output across 5 -inch diameter, 5-turn loop and couple inductively to receiver loop. Keep generator loop perpendicular to axis of and at least 12 inches from receiver iron core loop.

TO REPLACE CLOCK DIAL BACKGROUND

1. Carefully pull off the three hands.
2. Remove the alarm dial and dial background.
3. Install new background.
4. Turn the radio control shaft to "AUTO", position.
5. Slowly rotate the time set shaft clockwise until the switch contacts behind the radio control shaft close. Do not overshoot this point.
6. Reassemble the alarm dial and three hands. Set all the hands to indicate 12 o'clock. Set the figure " 12 " on the alarm dial to index with the small pointer on the hour hand.
7. Check the automaticoperation to be sure the switch contacts close at the time indicated on the alarm dial.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MOTOROLA, INC.

alignment Model 62X21, Chassis HS-326

NOTE: If $A C$ power is used, it is recommended that an isolation transformer be placed between the power line and the receiver to avoid hum and electrical shocks. If an isolation transformer is not available, connect the low side of the signal generator to B - through a. 1 mf capacitor.

1. Connect a low range output meter across the speaker voice coil.
2. Connect the low side of the signal generator to $\mathrm{B}-$ -
3. Set the signal generator for 400 cycle, 30% modulation.
4. Turn the receiver volume control to maximum.
5. Use a small fibre screwdriver for aligning the IF and diode transformers.
6. As stages are brought into alignment, reduce the signal generator output to a level which produces less than 1.25 volts (. 5 watt) across the voice coil to avoid overloading the receiver.
7. See Figure 5 for adjustment locations and the following chart for procedure. NOTE: The BC band must be aligned before SW. If the BC trimmers are adjusted, the SW must also be realigned.

STEP	DUMMY ANTENNA	GENERATOR CONNECTION	GENERATOR FREQUENCY	$\begin{aligned} & \text { GANG } \\ & \text { SETTING } \end{aligned}$	ADJUST	REMARKS
IF ALI	GNMENT					
1.	.1 mf	RF section of gang (rear stator)	455 Kc	Fully open	1, 2, 3 \& 4 (IF cores)	Adjust for maximum.
BC BAND RF ALIGNMENT						
2.	-			Fully closed	Pointer (see Figure 4)	-
3.	. 1 mf	RF section of gang (rear stator)	1600 Kc	1600 Kc on dial scale	$\left(B C^{5} \text { osc }\right)$	Adjust for maximum.
4.	. 1 mf	RF section of gang (rear stator)	600 Kc	600 Kc on dial scale	$\begin{gathered} 6 \\ \text { (BC osc } \\ \text { pad) } \end{gathered}$	Simultaneously tune gang and adjust core for maximum signal.
5.	-	-	-	-	-	Repeat steps 3 \& 4.
6.	-	Radiation loop*	1500 Kc	Tune for max	$\left({ }^{7} C^{R F}\right)$	Adjust for maximum.
SW BA 7.	ND RF ALIG	MENT	-	${ }^{-}$	-	Stop oscillator. (Place short across center section of gang). Connect VTVM to lug 4 of L-3 and B-; use lowest scale. Loosen SW Osc trim 8.
8.	400 ohms	SW Ant terminal	16 Mc	16 Mc on dial scale	9. 10 (SW Ant SW RF)	Set generator output to max. Adjust for max on VTVM.
9.	-	-	-	-	-	Remove short from gang.
10.	400 ohms	SW Ant terminal	16 Mc	16 Mc on dial scale	$\begin{gathered} 8 \\ (\mathrm{SW} \\ \mathrm{Osc}) \end{gathered}$	Generator output reduced to 25 microvolts. Adjust for max (1st peak on output meter) (Check image freq at 16.91 mc)

*Connect generator output to $5^{\prime \prime}$ diameter, 5 turn loop and couple inductively to receiver loop. Keep loops at least

FIGURE 5. TUBE AND TRIMER LOCATION

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MOTOROLA Auto Radio

ALIGNMENT
CHART
Model 403, continued.

6. With receiver installed in car, the antenna fully extended and dial set to approximately 1400 Kc , adjust antenna trimmer (7) for maximum signal of a weak station or noise between stations.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Matorola

MODEL
503

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS Motorola MOPAR MODEL 821

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAṀS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

OLYMPIC RADIO $9-435 \mathrm{~V}$ and $9-435 \mathrm{~W}$, continued.

ALIGNMENT INSTRUCTIONS

Equipment required: Modulated r-f signal generator, output meter, insulated screw driver, two 1 mfd .400 V . Condensers, one 400 ohms resistor.

To align the receiver it is necessary to remove the chassis from the cabinet, check thot the pointer is horizontal and coincides with the two horizontal reference lines on the dial. In this position the condenser should be completely closed. Turn volume control to maximum and connect the output meter across the voice coil.
Then connect the low side of the signal generator to the receiver chassis through a .1 mfd . condenser and keeping the output as low as possible proceed in the sequence as shown on the alignment chart.

To insure alignment a radiated signal will be required during part of the alignment procedure. To radiate a signal connect a loop of about $6^{\prime \prime}$ to $8^{\prime \prime}$ diometer, (one turn of \#14 or \#12 wire) across the output of the signal generator and place this loop parallel to the loop of the receiver to be aligned, at a distance of about $8^{\prime \prime}$ or $10^{\prime \prime}$.

STEP	SET BAND SWITCH ON	CONNECT HIGH SIDE OF signal generator TO-	SET SIGNAL generator TO-	TURN RECEIVER OIAL TO-	AOJUST THE FOLLOWING FOR MAXIMUM OUTPUT. (KEEP SIGNAL FROM SIGNAL GENERATOR AS LOW AS POSSIBLE).
1	B. C.	r.f section of variable CONDENSER OR PIN 4 OF THE I2SK7 TUBE IN SERIES WITH A IMFO. 400 VOLT CONOENSER.	455 KC	FULL CLOCKWISE POSITION (CONDENSER PLATES FULLY OPEN).	$\begin{array}{cl}\text { L4 AND L3 } \\ \text { (2no } & \text { I.F. }\end{array}$
2	B.C.	R.F. SECTION OF VARIABLE CONDENSER OR PIN 8 OF THE I2SAT TUBE IN SERTES WITH A IMFD. 400 VOLT CONDENSER.	455 KC .	FULL CLOCKWISE POSITION (CONOENSER PLATES FULLY OPEN).	$\begin{array}{ll} & \text { L2 } \\ \text { (Ist. } & \text { AND } \mathrm{L} . \mathrm{F} \end{array} \quad \text { TRANSFORMER) }$
3	B. C.		REPEAT	STEPS 1 AND 2	
4	B. C.	USE RADIATED SIGNAL (CONNECT BOTH SIDES of signal generator TO RADIATION LOOP).	1600 KC.	$\begin{gathered} 1600 \mathrm{KC} . \\ (160 \mathrm{ON} \mathrm{DHAL}) \end{gathered}$	$\begin{gathered} \text { C } 3 \\ \text { (OSCILLATOR TRIMMER) } \end{gathered}$
5	B. C.		1400 KC	MAXIMUM SIGNAL (APPROX. 140 ON OIAL)	$\begin{gathered} \text { C } 1 \\ \text { (ANTENNA TRIMMER) } \end{gathered}$
6	B. C.		600 kC .	MAXIMUM SIGNAL (APPROX. 60 ON OIAL)	C5 (PAOOER) ROCK VARIABLE FOR MAXIMUM SIGNAL
7	B. C	REPEAT		STEPS 4,5, ANO 6	
8	S.w.	ANTENNA WIRE ON LOOP IN SERIES WITH A 400 OHM RESISTOR.	15 Mc .	15 MC (APPROX. 15 ON OIAL)	C4 (OSCILLATOR TRIMMER) SECONO PEAK FROM TIGHT POSITION G2 (ANTENNA TRIMMER)
9	S. W.		5.5 MC.	RESONANCE (APPROX. 5.5 ON OIAL)	Check that pointer (at resonance) coingides WITH 5.5 MG. GALIBRATION POINT ON OIAL. if not repeat step 8.

CAUTION: FOR 220 VOLT OPERATION USE ADAPTOR CORD, PART NO LC-530.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS PHILCO MODELS 53-561, 53-562 AND 53-564
This service material will also apply to the following Models 53-563, 53-565 (these are the same electrically), Model 53-560 (special services band omitted), and Model 53-568 which is very similar.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS PHILCO PORTABLE RADIO MODEL 53-651

Philco Model 53-652 has almost an identical electrical circuit.

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	$\begin{aligned} & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	DIAL SETTING	Special instructions	
1	Output lead through a $.1-\mu \mathrm{f}$. condenser to antenna section of tuning condenser or to pin 6 of converter (1R5). Ground lead to B-.	455 kc .	Tuning garig fully open.	Adjust, in order given, for maximum output.	TC4-2nd i-f sec. TC2-1st i-f pri. TC3-1st i-f sec.
2	Radiating loop. See NOTE below.	1620 kc .	$1620 \mathrm{kc} . \dagger$	Adjust for maximum output.	C1B-osc. trimmer
3	Same as step 2.	$\begin{aligned} & \text { Between } 1400 \\ & \text { and } 1500 \mathrm{kc} \text {. } \end{aligned}$	Tune radio to generator signal.	Adjust for maximum output.	$\begin{array}{\|l\|} \hline \text { ClA-antenna } \\ \text { trimmer } \end{array}$
4	Same as step 2.	580 kc .	$580 \mathrm{kc}$. †	Adjust for maximum output. Rock tuning gang while making this adjustment.	TCl-osc. core
5	Repeat steps 2, 3, and 4 until no further improvement is obtained.				

NOTE: Use a 6-8 turn, 6-inch diameter loop made up of insulated wire. Connect to signal-generator leads, and place about 1 foot from radio loop antenna.
\dagger The radio can be set to this frequency by tuning it until the dial pointer coincides with the proper alignment mark on the bottom of the chassis. See figure 3.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ALIGNMENT PROCEDURE

POINTER-Set pointer to coincide with first index mark from left side of dial backplate (looking at front of dial backplate).
RADIO CONTROLS-Set volume control to maximum; set broadcast-special services switch, SW1, as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.
SIGNAL GENERATOR-Use modulated output.
OUTPUT LEVEL-During alignment, adjust signal-
generator output to maintain output-meter indication below .5 volt.

CRITICAL LEAD DRESS-To secure proper padding capacity, the green lead from pin 6 of the 1R5 tube to Zl must be dressed over the wiring panel, away from the chassis. The white lead which connects the low end of the aerial (LA1) to the broadcast-special services switch (SWl), must be dressed taut between the low-end tie lug and the retaining spring.

STEP	SIGNAL GENERATOR		r RADIO		ADJUST TRIMMER
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Through a .1- μ f, condensor to pin 6 of 1R5 cenvorter.	265 kc .	163 kk. (gang fully opon)	Sot breadcast-spocial services switch to broadcast position. Adjust, in ordor given, for maximum output.	$\begin{aligned} & \text { TC3-2nd i-f soc. } \\ & \text { TC4-2nd i-f pri. } \\ & \text { TC2—1 st lif pri. } \\ & \text { TC3-1 st l-f sec. } \end{aligned}$
2	Radiating loop. See note below.	1630 kc.	$\begin{aligned} & \text { * } 1630 \mathrm{kc} \text {. } \\ & \text { (gang } \\ & \text { fuily } \\ & \text { opon) } \end{aligned}$	Adjust for maximum output. If low-froquency dial tracking is far off, mak. adjustmonts in stops 3 and 4 before making this adjusfment.	C18-osc. shunt
3	Same as stop 2.	580 kc.	58G kc.	Adjust for maximum output while rocking tuning control.	C12-osc. sorios
4	Same as stop 2.	580 kc .	580 kc.	Adjust for maximum output. This adjustment shouid not be mado uniess dial tracking is off, or sensifivity is low at lowfrequency ond ($\mathbf{5 8 0} \mathbf{~ k c . \text { .). }}$	TC 1-m-f sec.
5	Same as stap 2.	1500 kc.	```1500 kc. (indox mark of right)```	Adjusp, in ordor given, for maximum output.	$\begin{aligned} & \text { C } 1 A-\mathrm{H} \\ & \text { C } 19 A-B C \text { aorial } \end{aligned}$
6	Repeat stops 3 and \mathbf{S} until ne further improvement is ohtained.				
7	Same as step 2.	3000 kc .	3000 kc .	Set broadcasp-special services switch to special sorvices position. Adjust, in order given, for maximum output.	C19C-SS cerial C18-m
8	Same as stop 2.	1900 kc.	1900 kc.	Adjust, in order given, for maximum output.	$\begin{aligned} & \text { C 198-SS aөriai } \\ & \text { sories tracker } \end{aligned}$
\bullet	Ropeat stops 7 and 8, and thon ropeat stop 5.				

NOTE: Make up six-fo-oight-furn, 6-inch diamofor loop using insuiated wire; connect to signal-generator leads and piace near radio ioop.
*Fer proper adiustmont of the oscilietor trimmer, fuity open the tuning geng end insert a , oo6-inch, non-motalit shim betwoen tho heol of the retor and the top of the stator piates. Close tho taning gang sufficiontiy to hoid the shim in piace, ond then remove the shim without disturbing the 'gang softing.

Drive-Cord Installation Details

Top View, Showing Trimmer Locations

83

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS PHILCO RADIO MODELS 53-950, 53-952, AND 53-954

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Philco Model 53-956, continued.
RAD1O CONTROLS-Set volume control to maximum, set band switch for FM reception, and set tuning control as indicated in chart.
OSCILLOSCOPE-Connect ground lead to chassis. Connect vertical input to FM TEST jack, J2; connect horizontal input to horizontal sweep output of sweep generator. (Oscilloscope is used for steps 1 and 2.)

SWEEP GENERATOR-Use FM r-f sweep signal generator. Connect output lead as given in chart. Set frequency and sweep width as indicated in chart.

OUTPUT METER-Connect across voice-coil terminals.
(Q) (1) Make AM alignment first

Figure 2. Characteristic Curve of FM Detector

STEP	SIGNAL GENERATOR		RADIO		ADJUST
	CONNECTION TO RADIO	DIAL SETTING	DIAL SETTING	SPECIAL INSTRUCTIONS	
1	Ground lead to chassis. Output lead through a $.01-\mu \mathrm{f}$, condenser to control grid (pin 1) of 12AU6 2nd i-f amplifier.	9.1 mc. (75kc. deviation).	88 mc . (gang meshed).	Balance and adjust detector for maximum indication on scope, as shown in figure 2.	TC8-detector sec. TC7-detector pri.
2	Ground lead to chassis. Output lead through a $.01-\mu \mathrm{f}$. condenser to FM tuning gang stator lug, junction of Cl and pin 4 of L2.	Same as step 1.	Same as step 1 .	Adjust for maximum indication on scope, as shown in figure 2.	```TC6-FM 2nd i-f sec. TC5-FM 2nd i-f pri. TC2-FM 1st i-f sec. TCl-FM 1st i-f pri.```
3	Ground lead to lug 3 of TB1. Output lead to lug 2 of TB1. See note 1 below.	108.5 mc .	108.5 mc . (1)st index mark from right).	Adjust for maximum indication on output meter.	C18-FM osc.
4	Same as step 3.	88 mc .	$\begin{aligned} & 88 \text { mc. (lst } \\ & \text { index mark } \\ & \text { from left). } \end{aligned}$	Adjust for maximum indication on output meter. See note 2 below.	L5-FM osc.
5	Same as step 3.	105 mc .	105 mc . (3rd index mark from right).	Adjust for maximum indication on output meter while rocking tuning condenser.	C1B-FM r-f.
6	Same as step 3.	105 mc .	105 mc .	Adjust for maximum indication on output meter.	C4-FM aerial.
7	Same as step 3.	92 mc .	92 mc . (3rd index mark from left).	Adjust for maximum indication on output meter. See note 3 below.	L2-FM r-f coil.

If FM aerial coil, L1, is replaced, it should be adjusted as directed in step 8, below.

8	Same as step 3.	92 mc.	92 mc.	Adjust for maximum indication on output meter.	TCll-FM aerial.

NOTE 1: For accurate results, the signal-generator output impedance must be 300 ohms, to match the input impedance of TB1. If the generator impedance is less than 300 ohms, a resistor of the proper value may be used in series with the output lead to make the impedance correct. For example, if the output impedance is 150 ohms , place a 150 -ohm resistor in series with the output lead.
NOTE 2: If oscillator does not tune as low as 88 mc ., compress the turns on the oscillator coil. If uscillator tunes too low, spread the turns slightly. After coil is adjusted, repeat step 3.
NOTE 3: Check resonance of coil L2 by inserting end of a tuning wand, such as Philco Part No. 56-6100, in the coil. If output increases when iron end is placed in coil, compress turns slightly. If output increases when brass end is placed in coil, spread the turns. If output decreases when either end is placed in coil, no adjustment is necessary. After the coil is adjusted, readjust ClB and repeat steps 3 through 8 until no further improvement is obtained.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS PHILCO RECORD CHANGER

MODEL M-24

DESCRIPTION OF OPERATING CYCLE

At the completion of a record, the changer trips, and allows the dog latch to engage the spur of the turntable hub gear. This rotates the cam gear, allowing the teeth of the cam gear and hub gear to engage. As the cam rotates, it forces the lifter lever down, raising the tone arm from the record. As the tone arm reaches maximum height, the tone-arm actuator, morivated by the cam gear, contacts the trip-arm stud and swings the tone arm against the rest post. After the tone arm reaches the rest post, the push-off lever rotates, nodding the spindle and dropping the next record onto the turntable. After the record has dropped, the return lever contacts the stud of the trip arm, and starts the tone arm inward. The tone arm is now controlled by the actuator and return levers, in contact with the stud of the trip arm. The return lever continues swinging the tone arm inward until it is stopped by the set-down lever, whose position is dependent upon the setting of the record shelf. This stoppage of the inward travel of the tone arm by the established position of the return lever accomplishes the set-down indexing. The tone arm is thus held above the set-down point. The lifter lever now moves upward, slowly dropping the tone arm to the record surface. As the cam gear continues to rotate, the actuator lever is moved outward and away from the strip-arm stud. The tone-arm return lever then moves away from the trip-arm stud, but the spring portion of the actuator momentarily remains in contact with the stud, preventing a sudden release of the tone arm, which could cause the needle to jump into the modulated groove. The trip-plate supporting finger now engages the dog latch, and the index lever locks the cam gear in a neutral position. The tone arm is now free to play the record.
As the tone arm advances toward the spindle, the friction-clutch trip finger engages the end of the trip plate. Through the applied pressure of the friction finger (approximately 2 grams) against the trip plate,

Figure 1. Record-Shelf Adjustment and 10-Inch, 12-Inch, and Fine Set-Down

the trip-plate finger supporting the dog latch begins to move, lessening the engagement of the trip-plate finger and dog latch, preparatory to releasing the latch. This engagement is slowly lessened while the needle is in the playing grooves, giving the reset cam an opportunity (once each revolution of the turntable) to reset the trip plate into full engagement and slip the friction finger into the friction clutch. As the needle rides in the lead-out or eccentric groove of the record, the velocity of the friction finger is increased. The speed of the disengagement of the trip-plate supporting finger and the dog latch is also increased sufficiently to allow complete disengagement of the dog latch before it has been restored by the reset cam.

ADJUSTMENTS

SPINDLE

The spindle should be checked for perpendicularity (use square on turntable surface) when the changer is out of cycle. To adjust, bend the ear on the push-offlever assembly; bending the lever toward the spindle spring, throws the top of the spindle away from the record shelf. This is shown in figures 3 and 6.

RECORD SHELF

CAUTION: This adjustment must be made immediately after a change cycle is completed.
With the changer turned to the OFF position, place a record-shelf gauge, Part No. 45-6647, on the record shelf. The edge of the gauge should fit snugly against the edge of the raised portion of the shelf. Remove all play without flexing the spindle.

If the gauge does not fit properly, loosen the two saddle mounting screws which hold the record shelf to the base plate (figure 1), and adjust the position of the record shelf. Then tighten the screws.
(Continued on pages 90 to 96 , inclusive) Reproduced through the courtesy of the Philco Corporation.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Philco Model M-24, continued.

TONE-ARM HEIGHT AND LIFT

With the changer out of cycle, and the tone arm over the base plate, the needle point should be $1 / 8$ inch $\pm 1 / 1{ }_{8}$ inch above the base plate. To adjust the clearance, bend the protruding ear of the swivel post, at the rear of the tone-arm heel. See figure 2. Bending the ear upward decreases the clearance, bending it downward increases the clearance. Raise the tone arm to its maximum height, and place it against the rest post. There should be approximately $3 / 32$ inch clearance between the lower edge of the tone arm and the top of the rest-post hook. Bend the ear of the swivel to obtain the most satisfactory adjustment of both the rest-post clearance and the base-plate clearance.

VERTICAL TIMING

Adjust the vertical timing by bending the end of the lifter lever (shown in figure 2), which attaches to the pull-cord, so that there is approximately $1 / 32$ inch to

Figure 2. Tone-Arm Height and Lift Adjustments and Vertical Timing Adjustments
$1 / 16$ inch slack in the pull-cord for all tone-arm positions between the tone-arm rest post and the spindle, when the changer is out of cycle. Check by cycling the changer and note that the lifter lever and pull-cord will raise the tone arm straight up to its maximum height, and then move horizontally to the tone-arm rest post after the slack adjustment has been made.

SET-DOWN

Set the record shelf to the 12 -inch position. Set the eccentric stud to its center position toward the corner of the base plate. This stud is accessible through a hole in the base plate near the tone-arm stanchion (see figure 5). Place a 7 -inch record on the turntable, set the record shelf to the 7 -inch position, and cycle the changer by hand until the tone arm is just above the
record. Loosen the hex-head clamp screw on the trip arm (see figure 3), and swing the tone arm until the needle is $1 / 8$ inch in from the edge of the record. Tighten the clamp screw, and check the adjustment by putting the changer through another cycle. If the set-down point is slightly incorrect, it may be corrected by means of the eccentric stud mentioned above. Recheck the needle set-down. The trip arm should be positioned vertically so that the friction finger is midway between the base plate and the lifter lever. Remove the 7 -inch record. Set the record shelf to the 10 -inch position, and place a 10 -inch record on the turntable. Rotate the turntable until the needle is just above the record. If the needle is not $1 / 8$ inch in from the edge of the record, an adjustment may be made by bending the ear of the set-down cam which is in contact with the eccentric stud. See figure 1. Bending the ear outward moves the set-down point away from the spindle; bending the ear in toward the shelf shaft moves the set-down point toward the spindle. Recheck the needle set-down. Using a 12 -inch record, with the shelf set to the 12 -inch position, repeat the adjustment, bending the corresponding ear of the set-down cam (figure 1).

The eccentric stud mentioned above (shown in figures 1 and 5) provides a fine adjustment of the setdown position. This adjustment varies the set-down position of all size records over a total range of $3 / 16$ inch. Do not use this adjustment unless it is desired to change all three set-down positions by an equal amount.

TRIP

CAUTION: Do not adjust the friction clutch until the trip-plate engagement is properly set, as explained below.

Figure 3. Adjustment of Trip Arm for 7̈-Inch Set-Down

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

The proper trip action is greatly dependent upon the proper engagement of the dog latch and the finger of the trip plate supporting it. The correct engagement is $5 / 14$ inch (or approximately one-half the width of the supporting finger of the trip plate) when the ear of the reset arm is contacting the peak point of the reset cam. This is shown in figure 4. The extent of this engagement is adjustable by bending the ear of the trip plate, shown in figure 6. Bending the ear inward decreases the amount of engagement, and bending the ear outward increases the amount of engagement. This

Figure 4. Trip Adjustment
adjustable ear is accessible through the large hole in the bridge, and should be bent by using long-nose pliers.
NOTE: Too much engagement will prevent tripping, while too little engagement will cause pre-tripping.

Philco Model M-24, continued.
After the trip-latch engagement is set, check the changer for trip action. If the trip action is faulty, i.e., if the changer pretrips or does not trip at all, recheck the triplatch adjustment. If the changer still does not operate properly, check for tight tone-arm lead dress or excessive friction in the tone-arm-shaft bearing. If this does not clear the trouble, the friction clutch can be adjusted, although this should not be necessary. This is a screw adjustment and it is accessible from under the motorboard. (See figures 3 and 15.) Adjust the screw which is located on the trip arm by turning it counter-clockwise until it is snug, (not tight); then loosen one turn. Check the adjustment by playing several records. If the changer pre-trips, loosen the screw (turn clockwise) a bit more. This trip arm and clutch assembly is shown in figure 15.

UNEVEN TURNTABLE SPEED (WOWS)

Uneven turntable speed may be caused by any of the following conditions:

1. Dirt under and around the idler-wheel assembly.
2. Idler-wheel spring loose or missing.
3. Flat spot on idler-wheel tire or turntable.
4. Loose, worn, or distorted pulley belt.
5. Oil or grease on idler-wheel tire, pulley, pulley belt, or drive shaft.
6. Speed-control knob not in proper position.

Figure 5. Top View, Showing Lubrication Points

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Philco Record Changer Model M-24, continued.

Figure 6. Bottom View, Showing Lubrication Points

Figure 7. Bottom View, Bridge Removed, Showing Lubrication Points

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Philco Automatic Record Changer MODEL M-24 (Continued)

Figure 11. Motor Assembly-Part No. 35-1451

Figure 10. Control Assembly

Figure 8. Actuator Assembly

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Philco Automatic Record Changer Model M-24, continued.

Figure 14. Tone-Arm Assembly

Figure 15. Trip-Arm Assembly

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS RCA VICTOR RGA $\underset{\text { Chasis No. Rc-1115 }}{\operatorname{MOD}} \mathbf{~} 63$

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS RCA 2-C-521 SERIES

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS (8Ci) RCA VICTOR
 SERVICE DATA

CRITICAL LEAD DRESS

A-C Operated Radio Receiver

MODELS 2-R-51, 2-R-52

Chassis No. RC1 119

Tuning Range
Intermediate Frequency
540-1600 kc
Tube Complement:
(1) RCA 12BE6

Converter
(2) RCA 6 BJ 6

IF. Amplifier
(3) RCA $12 A V 6$
(4) RCA 6 AK6

RCA Stock No. 77292
Top View

1. Oscillator coil should be centered in space provided and have at least $1 / 4$ inch between winding and chassis.
2. The filament wiring should be dressed down on chassis and away from audio leads and audio coupling condensers.
3. The I.F. plate and grid leads, including the 2nd I.F. diode lead should be as shorit as practical.
4. The output plate by pass condenser should be dressed against the side of the chassis and away from the lst audio grid condenser and the diode filter resistor.
5. Output transformer primary leads should be dressed away from the selenium rectifier.
6. The loop antenna should be accurately centered in its position on the fishpaper cover. The ends must not project beyond the fishpaper.

ALIGNMENT PROCEDURE

Test-Oscillator-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.
On a.c. operation an isolation transformer (115 v ./115 v.) may be necessary for the receiver if the test oscillator is also a.c. operated.

Output Meter-Connect meter across speaker voice coil. Turn volume control to maximum.

Step	Connect the high side of test-oscillator to-	Tune test-osc to-	Turn radio dial to-	Adjust the following for max. output
1	6BJ6 I-F grid through 01 mfd. capacitor	455 kc	Quietpoint 1600 kc end of dial	T2 (top and bottom) 2nd I-F. trans
2	Stator of ClA through 01 mfd			Tl (top and bottom 1st I-F trans.
3	Short wire placed near loop to radiate signal	1620 kc	Min. cap.	ose trimmer ClB-T
4		1400 kc	$\begin{gathered} 1400 \mathrm{kc} \\ \text { signal } \end{gathered}$	ant trimmer ClA-T
5		Repeat steps 3 and 4		

Bottom View

$$
\text { (})=\underset{\text { osc.cont }}{=0}
$$

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

rca Victor
 Chassis No. RC-1117D

Radio Phonograph Combination

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

rca Victor

AC-DC Radio Receiver

 Modes 2X61, 2×62 Chassis No. RC-1080C RC-1080DALIGNMENT PROCEDURE
Cathode Ray Alignment is the preferable method. Connections for the oscilloscope are shown on the schematic diagram.

Output Meter Alignment -II this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.
Test Oscillator.-Cownect low side of test oscillator to common wiring in series with a . 1 mf . capacitor. If the test oscillator is a.c. operated it may be necessary to use an isolation transformer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent a-v-c action.

Siep	Conneat high side of sig. gen. 10 -	Sig. gen. oulpul	Turn radio dial to-	Adjust for peak oulpul
1	Pin No. 4 of 12SK7 lube	455 kc	Quiel point near 600 kc	Top and botiom
2	Pin No. 8 of 12SA7 tube			Top and bottom coros of Tl
3	"Exiernal Antenna' lerminal through 100 mmf . capacilor	$\begin{array}{r} 1620 \mathrm{kc} \\ 1400 \mathrm{kc} \end{array}$	$\begin{aligned} & 1620 \mathrm{kc} \\ & 1400 \mathrm{kc} \end{aligned}$	$\begin{aligned} & \mathrm{C} 6 \mathrm{Osc} . \\ & \mathrm{CS} \text { R.F. } \\ & \mathrm{C} 4 \text { Ani. } \end{aligned}$
4		Shunt C5 with 22,000 ohm resistor		
		600 kc	600 kc	L4 Osc. (Rock gang)
5		Remove 22,000 ohm resistor from C5		
		600 kc	600 kc	L2 R.F.
6		Repeat seps 3, 4 and 5		

The position of the loop antenna in relation to the chassis affects cadjustment of C4. The correct position is indicated on the illustration "Tube and Trimmer Locations."

Dial Indicator and Drive Mechanism

Tube and Trimmer Locations
NOTE.-If reception is not obtained on d. c. operation, reverse plug in outlet receptacle. On a. c. operation this may reduce hum.
The position of the speaker is cadjustable; the correct position is indicated on the illustration "Tube and Trimmer Locations."

2X61, 2X62

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST－OFTEN－NEEDED RADIO DIAGRAMS

RCA Victor
 （Continued from preceding page） ALIGNMENT PROCEDURE

allgnment indicatohs：

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d－c voltage during FM alignment．Connec－ tions are specitiod in the alignment tabulation．An output meter is also necessary to indicate maximum audio output during AM alignment．Connect the output meter across the speaker voice coil．The RCA Voltohmyst can also be used as an AM align－ ment indicator，either to measure audio output or to measure AVC voltage．When audio output is being measured，the vol ume control should be turned to maximum．Adjust tone control to mid－position．
SIGNAL GENERATOR：
For all alignment operations，connect the low side of the signal generator to the receiver chassis．If output measurement is used for AM alignment，the output of the signal generator should be kept as low as possible to avoid AVC action
If an FM sweep generator is used for FM alignment，adjust for $10.7 \mathrm{mc}, 0.4 \mathrm{mc}$ sweep．Connect oscilloscope across C26， adjusting discriminator T6 top core for 10.7 mc crossover，and T6 bottom core for balanced peaks．Peak separation should be approximately 330 kc ．When aligning the other FM tuned cir－ cuits，connect oscilloscope lead through a 220 K resistor to pin 1 of V5．Follow alignment table sequence，adjusting for maximum gain and symmetrical curves．

Tube Socket Voltages

Tube Type and Function	Tube Element	Pin No．	AM	FM	Phono
V1 6BJ6 A．F．Amp．	Plate Screen Cathode Grid	$\begin{aligned} & \hline 5 \\ & 6 \\ & 2 \\ & 1 \end{aligned}$	$\begin{array}{r} 94 \\ 94 \\ 0.7 \\ -0.5 \end{array}$	92 92 0.9 0	$\begin{array}{r} 92 \\ 92 \\ 0.5 \\ -0.6 \end{array}$
V2 19X8 Mixer Osc．	Plate Screen Cathode Grid Plate Grid Cothode	$\begin{aligned} & 9 \\ & 1 \\ & 6 \\ & 7 \\ & 3 \\ & 2 \\ & 6 \end{aligned}$	$\begin{array}{r} 75 \\ 75 \\ 0 \\ -1.6 \\ 65 \\ -3.3 \\ \hline \end{array}$	$\begin{array}{r} 80 \\ 80 \\ 0 \\ -2.3 \\ 85.6 \\ -3 \end{array}$	$\begin{array}{r} 80 \\ 80 \\ 0 \\ -2.3 \\ 74 \\ -0.3 \end{array}$
V3 12BA6 I．F．Amp．	Plate Screen Cathode Grid	$\begin{aligned} & \hline 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 94 \\ 94 \\ 0.8 \\ -0.4 \end{array}$	$\begin{array}{r} 92 \\ 92.3 \\ 0.9 \\ -0.2 \end{array}$	90 90 0.8 -0.2
V4 12AU6 2nd 1．F． Amp．（F．M．）	Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 95 \\ 95 \\ 0.8 \\ 0 \end{array}$	$\begin{array}{r} 93.5 \\ 94.1 \\ 0.8 \\ 0 \end{array}$	92 92 0.9 0
$\begin{aligned} & \text { V5 12AU6 } \\ & \text { 3nd 1.F. } \\ & \text { Amp. (F.M.) } \end{aligned}$	Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 74 \\ 74 \\ 0.3 \\ -0.2 \end{array}$	73 73 0.3 -0.4	72 72 0.4 -0.2
V6 12AL5 F．M．Det．	Plate Cathode Plate Cathode	2 5 7 1	二	二	二
V7 12AV6 A．M．Det． Audio Amp．	Plate Grid Plate （Diode）	$\begin{aligned} & 7 \\ & 1 \\ & 5 \end{aligned}$	$\begin{array}{r} 58 \\ -0.9 \\ -0.5 \end{array}$	$\begin{array}{r} 57 \\ -0.8 \\ -0.3 \end{array}$	$\begin{array}{r} 57 \\ -0.8 \\ -0.3 \end{array}$
V8 35C5 Audio Output	Plate Screen Cathode Grid	$\begin{gathered} 7 \\ 6 \\ 1 \\ 2-5 \end{gathered}$	$\begin{array}{r} 130 \\ 96 \\ 5.1 \end{array}$	$\begin{array}{r} 130 \\ 94.5 \\ 5.0 \end{array}$	130 94.5 5.0

Hectifier output should be approximately 139 volts， 70 ma．

Receivers 2－XF－931，2－XF－932，2－XF－933，
2－XF－934，2－XF－935，using Chassis RC－1121A．
Model 2－XF－91，Chassis RC－1121，is similar．

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS rca Victor
 MODELS 15-E, 15-E-1
 Chassis No. RS-139A,

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

SPECIFICATIONS

Turntable speed
$331 / 3,45$ or 78 r.p.m. Up to 14 seven-inch or 12 ten-meh or 10 twelve-inch or 10 ten- and twelve-inch intermixed
$930409-3 \quad 115$ v. 60 cycle molor convertible to 50 cycles. Ceramic pickup Stock No. S-5652.
930409-4 115 v. 25 cycle motor.
Ceramic pickup Stock No. 162A001.
Used in Model 35QU.
930409-5 115 v .60 cycle motor.
Crystal pickup Stock No. 75475.
Used in Models 2ES3, 2ES31, 2ES38, 2ES38E, 2JSI, 2JS1E, 2S10, 2US7, 21T197DE, 21T242 and 21 T244.
$930409.6 \quad 115$ v. 60 cycle motor convertible to 50 cycles. Ceramic pickup Stock No. 162A001.
Used in Models 2ES31Q, 2ES38Q, 2JSIQ and 35QU.
$930409-9230$ v. 50 cycle motor converthble to 60 cycles. Crystal pickup Stock No. 75044
930409-10 Some as 930409-5 except hight color.
Used in Models 2S10, 2US7 and 21 IT242.
930409-11 115 v. 50 cycle moior convertible to 60 cycles. Crystal puckup Stock No. 75475. Used in Model 2US7.

CONTROLS

The record changer has a dual control on the motorboard and a stylus selector control on the pickup arm. The inner control (circular knob) is the OFF-ON-REJECT control. Turming this knob to the center position energizes the motor and starts the turntable, when turned to the right (clockwise) it starts the mechanism into complete automatic operation. The mechanism will shut of automatically after the last record has been played but can be shut off manually by furning this knob to the left (counter-clockwise).

The outer control (double ended lever) is the speed control. It has three normal positions, "33", "45", " 78 " to select the turntable speed desired and a neutral position (midway between " $45^{\prime \prime}$ and " 78 "). The control should be turned to this neutral position if the changer is not expecter to be in use for an extended period of time.

The stylus control has two normal positions (right and left) and one shipping position (lever pointing up). When playing $331 / 3$ or $45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. records the lever is turned so that " $33-45$ " is visible on the TOP of the lever; likewise for 78 r.p.m. records " 78 " should be visible on the TOP.
The removable centerpost is for use with 45 r.p.m. records having the large centerhole. It must be placed over the cenler spindle with the "RCA" trademork monogram FACING to the FRONT. When not in use it is placed in a well at the tront of the motorboord.

To load or remove records, the record stabilizer is lifted and turned off-side. After looding it is turned to the center where it rests on top of the stack of records.

The material covering RCA Series 930409 Record Changers is presented on pages 105 to 116, inclusive.

INDEX

Lubrication		106
Stylus Replacement		106
Record Stablizer Arm		106
50/60 Cycle Conversion		106
Adjustments		107
Cycle of Operation	108	111
Exploded View of Mechanism		112
Replacement Parts	113	116

Controls

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

RCA, continued

Figure 1-Bottom View

LUBRICATION

The mechansm is properly lubricated when it leaves the lactory, ardditional lubrication should not be necessary for a long period of time. If the mechanism has unusual use or high operating temperatures, it may be necessary to lubricate more frequently.

It is suggested to use Lubriplate or STA-PUT No. 512 on:

1. Pickup arm pivot.
2. Points of sliding contact with cycling slide, inclading: a. elevating rod
b. lift arm
c. roller on cycling cam
d. pickup arm return lever
e. pickup arm lever
3. End of selector lever contacting tab on cycling gear.
4. Turntable thrust bearing.
5. Sparingly on a trip slide.
6. All points of sliding contact.

Apply a small quantity of light machine onl to:

1. Trip pawl pivof.
2. Cychng engagement pawl pivot.
3. Bearing of record stabilizer.
4. Elevating rod.
5. Bearing of lift arm.
6. Bearing of reject lever.
7. Bearing of stop lever.
8. Bearing of cycling gear.
9. Motor bearings.

NOTE: Keep oil or grease away from all rubber parts.

Stylus Replacement

PICKUPS NO. 75044 and S-5652
The styli are held in position by small thumb nuts (one for each stylus). Loosen the nut to remove stylus.
PICKUP NO. 75475
The styli are held in position by small hex nuts (one for each stylus). Remove the nut and push threaded end of stylus through the cartridge.
PICKUP NO. $162 A 001$
The styli are held in position by pressure fit. To remove stylus, grip with tweezers and pull straight to the front of pickup.

CAUTION:

The internal element of the pickups can be fractured by use of excessive force. It is advisable to grip stylus with pliers instead of holding pickup case while removing nuts.
Although the 78 and the $45-331 / 2$ styli are mechanically interchangeable, they should be replaced in such manner that the stylus which is coded red will contact the record when " $33-45$ " on the stylus selector knob is visible from the top.

Record Stabilizer Arm

Two types of stabilizer arms are in use. Type " A " when raised and moved outward will remain projected beyond the edge of the motorboard. Use Stock Number 76941 (plum) or Stock Number 76942 (beige) record stabilizer housing. Type " B " when raised and moved outward will return to within the edge of the motorboard. Use Stock Number 77256 (plum) record stabilizer housing, and Stock Number 77257 record stabilizer return spring.

The replacement stabilizer arm (plum) Stock Number 77255 can be used with either Type " A " or Type " B "

50/60 Cycle Conversion

Models 930409-3 and 930409-6 are made for 60 cycle operation but may be converted to 50 cycle operation.

Models 930409-9 and 930409-11 are made for 50 cycle operation but may be converted to 60 cycle operation.

To convert the above listed models it $1 s$ necessary to remove the original spring sleeve from the motor shaft and install the alternate apring sleeve (in envelope attached to record changer). This is easily accomplished by holding the rotor of the motor while removing or installing the spning sleeve with a twisting motion.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

RCA, continued
930409 Series

ADJUSTMENTS

14
STYLUS FORCE ADUSTMENT

Figure 2-Adjustments

LANDING ADJUSTMENT

Only one landing adjustment is necessary. The landing position of the stylus is adjusted by means of the eccentric stud (20A), mounted on the pickup arm support bracket. When adjusted for correct landing on one size of record, the landing position for other sizes of records is automatically corrected.

PICKUP ARM HEIGHT ADJUSTMENT

The pickup arm height during cycle is adjusted by means of the hex head screw (17), located in the pickup arm.
Turn control knob to "REJ" and rotate turntable by hand until arm has risen to its maximum height. Adjust screw so that stylus is 1 " "above turntable.

STYLUS FORCE ADJUSTMENT

Stylus force should be $7^{1 / 2}$ to $9^{1 / 2}$ grams. Loosen screw (14), and move slide until the correct iorce is obtained.

TRIPPING

The tripping method used in this mechansm is a combinction of velocity and fixed diameter. Velocity tripping is effective between $434^{\prime \prime}$ and $31 / 4^{\prime \prime}$ diameters, when the stylus moves inward $1 / \mathrm{s}^{\prime \prime}$ or more per revolution of the turntable. No adjustment is required.

Figure 3slide Assembly (Complete)

MUTING SWITCH
94

Figwre 4Slide Assembly (View with Slide Removed)

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

930409 Series

CYCLE OF OPERATION

TURN ON-OFF-REJECT CONTROL KNOB TO REJECT POSITION \& RELEASE

1. The on-off-reject control knob, lhrough the linkage of the function conlrol lever (54), rejecl rod (52), and reject lever (109) acluates the power swilch and the Irip slide (139).
2. The closing of the power swilch energizes the molor and starts the turntable rotating.

CYCLING STARTS

1. The trip slide (139) in ils movemenl contacts the lower trip pawl (131) and moves bolh the lower and the upper trip pawls which are linked logether. The movement of the upper trip pawl (129) acluates the cycling engagement pawl ($130 A$) sufficienliy lo cause it 10 engage wilh the projection on the hub of the rolaling turntable.
2. The conlact belween the cycling engagement pawl (130A) and the projection on the lurntable hub gives the necessary push for the leelh in the cycling gear (130) to engage the leelh in the shafl of the lumiable and thus starl the change cycle.

PICKUP ARM RISES \& MOVES OUTWARD

1. As the cycling gear rolates, the slud (130B) mounled on the underside of the gear, rides inside a slol cul in the cycling slide (141). The rolation of the cycling gear pushes the cycling slide back, and later, allows it to return.
2. As the slide moves away from the center posi, an incline formed on the end of the slide causes the elevating rod (123) to rise and lift the pickup arm.
3. At the same time that the elevating rod is pushed upward, the pickup arm lever (124) is also pushed up by the force Iransferred through the spring (125). The raising of the pickup arm lever canses the two formed dimples in the pickup arm lever to engage the two holes in the pickup arm relurn lever (120), and couple them together. This directs the movement of the pickup arm during change cycle.
4. The cycling slide conlinues to move away from the center post until the formed end of the slide pushes against the pickup arm relurn lever. This relieves the force of pickup arm relurn lever againsl slop lever (115). This permils the slop lever relurn spring (114) to return the slop lever to the normal (raised) posilion.
5. The end (115A) of slop lever (115) pushes trip slide back ready for the next change cycle.

Figure 7

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

RCA, continued
CYCLE OF OPERATION (Cont.)
930409 Series

RECORD DROPS TO TURNTABLE

1. After the cycling slide has raised the pickup arm and is moving it outward, the lift arm (100) is actuated by the cycling stide.
2. The lift arm pushes up on the shaft extending from the bottom end of the center post. This shaft actuates the push-oft mechanism inside the center post, and the record drops to the turniable.

SELECTION OF LANDING POSITION

1. During rotation of the cycling gear the riveled lab (130C) near the center of the gear, pushes down on one end of the selector lever (103) (which is pivoted in the center) thereby raising the other end causing it 10 latch on the end (89A) of the twelve-inch indexing lever (89).
2. The mechanism is thus automatically indexed to land on a ten inch record unless the selector lever (139) is disengaged from the end of the twelve-inch indexing lever.

7 Inch Indexing:

The ten-inch indexing lever (133) is pivoted in the center and one end (133A) is held (by lension of spring) against the top surface of the cycling gear. A hole in the gear will permit the end of the indexing lever to lower and thus raise the opposite end of the lever. A projection (133B) on the lever will at the same time lift the selector lever, permitting it to engage the top step of the pickup arm return lever (120). This position allows the pickup arm to land on the edge of the seven-inch record.

10 Inch Indexing:

The ten-inch indexing lever will lift the selector lever unless a record on the turntable contacts the rubber tip of the ten-inch indexing lever (133), and prevents it from rising. When the lever is prevenled from rising, the selector lever will remain in position to engage the middle step of the pickup arm return lever.

12 Inch Indexing:

When a twelve-inch record drops to the turntable, it strikes the twelve-inch indexing lever (89) and forces it backward. This disengages the end of the selector lever

Figure 11
Figure 12
Figure 13

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

930409 Series

CYCLE OF OPERATION (Cont.)

Figure 14

Figure is

Figure 16

RECORD PLAYS

1. As the record plays, the pickup moves in toward the center of the record carrying the trip slide along. This is due to the contact made with the pickup arm lever which turns with the pickup arm pivot.
2. The trip slide contacts the lower trip pawl, causing both (lower and upper) trip pawls and the cycling engagement pawl to move slightly with each revolution of the record. This slight movement of the pawls is reversed each time the projection on the turntable hub comes in contact with the cycling engagement pawl. The back movement is taken up in the friction connection between the upper and lower trip pawls.

TRIPPING

This slight movement of the pawls continues as long as the pickup moves in at a constant rate of speed. When the stylus leaves the recorded section of the record, the rapid acceleration results in rapid movement of the cycling engagement pawl. The cycling engagement pawl ausumes a position in which the projection on the turntable hub makes a positive contact and the cycling cam is pushed sufficiently for engagement between the teeth of the cycling gear cid the teeth on the turntable hub. This starts change cycle.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

RCA
CYCLE OF OPERATION (Cont.)

MECHANISM STOPS AFTER PLAYING OF LAST RECORD

After the mechanism has been tripped it again follows the preceding sequence of cycling and playing the records until the last record of the stack has been plaryed.

1. As the last record of the stack drops to the turntable the record stabilizer drops and actuates the stop arm (115). This stop arm in turn applies force to stop lever (115) through spring (115B) and connecting wire (137). At this moment the cycling slide is in the outermost position (away from centerpost) and the end (115B) of stop lever is forced against escape lever (141B) which prevents it from lowering any further.
2. As the cycling slide returns to the out of cycle position the end (1158) of stop lever slides off the escape lever permitting the end to extend down through the slot in the cycling slide. At this time the pickup arm refurn lever has rotated too far to be blocked by the other end (115 C) of the stop lever and the pickup is permitted to land on the record.
3. After the last selection has been plaryed the mechanism again goes into change cycle, and the cycling slide moves into its outermost position. At this moment the force which has been applied to the stop lever from the record stabilizer causes the end (115B) to lower, thus extending further through the cycling slide. The other end (115C) of stop lever raises and blocks the pickup arm return lever which at this moment is held back by the cycling slide.
4. As the cycling slide moves back, it carries the raised trip slide along until finally the formed end (139A) of the trip slide pushes reject lever which in turn actuates the power switch (110). This removes the power from the drive motor and mechamism stops.
5. The elevating rod (124) lowers the pickup arm to the rest.

45 R.P.M. CENTERPOST

For playing of $45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. records which have a $11 / 2$ inch center hole, the 45 r.p.m. centerpost is placed over the $1 / 4$ inch centerpost. The push-off tinger (84A), which is part of the $1 / 4$ inch centerpost actuates the slide (24), this slide actuates the separator knives (25A \& 25B) and separator shelves (26A \& 26B) of the 45 r.p.m. centerpost.

As the push-olf finger moves up it engagse a finger (24B) of the slide (24) in the 45 r.p.m. centerpost; and, as it moves horizontally, it pushes the slide against the tension of the slide return spring (27). A projecting pin (24C) on the bottom of the slide engages both shelves and both knives and forces them to turn on their pivots. The shelves are pivoted near their center and are caused to retract as the slide is forced to move by the push-olf finger. The knives are pivoted at their ends and are forced outward at the same time that the shelves are retracted. A formed spring (28) returns the shelves to the extended position.

Figure 23

Figure 24

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

RCA, continued REPLACEMENT PARTS 930409 Series

$\begin{aligned} & \text { ILLI. } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { STOCK } \\ \text { NO. } \end{gathered}$	DESGRIPTION
1	76913	Stabilizer-Recordetabilieer-plum-complete with platic cop for $930409-3,-4,-5,-6,-9$ ond -11
1	76914	Stabilizer-Record etabiliear-beige-complete with plastic cap for 930409-10
1 A	75804	Cap-Plastic cap-maroon-for racord etabilizer for $930409-3,-4,-5,-6,-9$ and -11
1A	75805	Cap-Plastic cap-baige-for record otabilizer for $930409-10$
2	77116	Turntable-Turntable and hub assembly-maroon flock.
2	77119	Turntable-Turntable and hub ansembly-tan flock-for 930409-10
3	76905	Nut-1/4-28 hex nut (jam) for pickup arm bracket
4		Lockwasher- $1 / 4$ external type lockwanher for pickup arm ehaft
35	76941	Houning-Record otabilizer houeing-plurn-Type ' A '' (aee Page2) for $930409-3,-4,-5,-6,-9$ and -11
35	77256	Houaing-Record etobilizer houaing-plum-Type "B"' (see Poge 2)
35A	77257	Spring-Record atobilizer return epring for ume with Type "B" record atobilizer housing
35	76942	Housing-Record etabilieer housing--beige-for 930409-10
36		Motorboard-Motorboard-complete
37	74782	Emblem-'RCA Victor
35		Screw- \#10-24 • $3 / 2 "$ binding head mochine ecrew and internal lockwanhor
39	75829	Housing-Pickup arm pivot ehaft housing-plum -for $930409-3,-4,-5,-6,-9$ and -11
39	75873	Houaing-Pickup orm pivot ehaft housing-beigefor 930409-10
40	76915	Knob-Reject control knob and shaft-moroonfor $930409-3,-4,-5,-6,-9$ and -11
40	76916	Knob-Reject control knob and ehaft-beige-for 930409-10
41	75827	Rest-Pickup arra rest (maroon) for 930409-3, -4, -5, $-6,-9$ ond -11
41	76928	Rest-Pickup orm rest (beige) for 930409-10
42	76937	Knob-Motor apend control knob and ehaft
43		Screw-\#6-32 $\times 1 / \mathbf{4}^{\prime \prime}$ hee hoad ecrew
44	75385	Waeher-" C " wanhar to mount re
45		Clamp-Cable clamp
46		Screw-Screw for mounting coble clomp
47	75830	Screw-\#10 - $1 / 2$ crose racessed pan head ecrew to mount pickup arm reat
46		Screw-\#6-32 $\times 1 / 4{ }^{\prime \prime}$ hee hoad acrew
49	16920	Rod-Motor epeed control rod
50	77229	Grommet-Rubber grommet for motor apeed control rod
51	16916	Levar-Motor epeed control lavar
52	76919	Rod-'On-Off'-'Roject' rod
53	76928	Washer-'C'' washer for motor apeed control knob and shaft
54	76917	Lever-Switch control lever
55	77227	Nut-Pal nut for raject control knob and ehaft
58	76927	Arm-Stop arm assembly
57	76928	Spring-Return apring (coil type) for top arm $\text { (1/8"I.D. }=19 / 32)$
69		Screw-8-32 © 5/16" crows recessed round head ecrew
77	75876	Wather-' 'C' washer to mount motor ${ }^{\text {a }}$
78	76925	Spring-Spring for 45 r.p.m. centerpost housing hinge pin
79	76922	Lid-45 r.p.m.centerpot houainglid-moroon-for $930409-3,-4,-5,-6,-9$ and -11
79	76923	Lid-45 r.p.m. centerpoet housing lid-beige-for 930409-10
20	76921	Housing-45 r.p.m. centerpost housing well-leselid and rubber bumper
61		Scrow-\#10-32 • 3/16" cross recess pan head ecrew to mount $45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. centerpoet housing
62	76924	Pin-Hinge pin for 45 r.p.m. centerpost housing lid
83	76940	Bumper-45 r.p.m. centerpoet houeing rubber bumper
147		Screw-\#10-24 • 3/8" binding haad machine acrew and internal lockwasher 45 RPM CENTERPOST ASSEMBLY
21	76928	Cap-Nome cap
22 23	76930	Spring-Nowe apring (formed) Screw- \#4-40 $\times 1 / 4^{\prime \prime}$ crome recessed binding head
23	76909	Screw- \# $4-40 \times 1 / 4^{\prime \prime}$ cross recessed binding head werew for noes opring
24	76933	Plate-Slider plate assembly complete with apringe 24A
28	76932	Knife-Record soparator knife (1 eot)
26	76931	Sholf-Record eupport aholf (1 eot)
27	76934	Spring-Slidor roturn epring (coil type-2 in 1)
28 29	76938	Spring-Shelf return epring (formed) Body-Spindle body assembly
30	76935	Screw-\#4-40 - $7 / 8^{\prime \prime}$ fillister head ecrew for nowe cap
31		Rotor-Die-cast rotor
32	76954	Spring-Rotor lift epring (coil) (1.169" O.D. • $^{\prime \prime}$ -4-5 turns)
33 34	76929	Lift-Rotor lift Bearing-Bottom bearing

Fig. 26-45 r.p.m. Centerpost Assembly
113

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

930409 Series
RCA, continued

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

RCA
REPLACEMENT PARTS (Cont.)
930409 Series

Fig. 28-Motor Assembly

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

930409 Serie		es REPLACEMENT PARTS (Cont.)			
ILL.	$\begin{aligned} & \text { stock } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { ILL. } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { stock } \\ \text { NO. } \end{gathered}$	DESCRIPTION
10	S-5652	PICKUP ASSEMBLIES For 930409-3 and 930409-9	7	76949 100A001	Arm-Pickup arm shell (plast:c) for 930409-5, - 10 and - 11 Arm-Pickup arm shell (plastic) for 930409-3, -4,
		Pickup-Ceramic pickup complete with two atyli -for 930409-3	7A	76948	-6 and -9 Screw-Pickup arm mounting bracket pivot ecrew
10	75044	Pickup-Crystal pickup complete with two etyli -for 930409-9	7B	76947	Bearing-Pickup arm mounting bracket pivot bearing
10A	75046	Stylua-Oamium tip stylue and holder (. $003^{\prime \prime} \mathrm{r}$.,	6	75606	Cable-Three (3) wire pickup cable complete with connectora far 930409-5, -10 and -11
108	75045	Stylun-Oemium tip etylue and holder (. $001^{* r}$ r.. coded red) for $45-331 / 3$ r.p.m.	8	163A001	Cable-Three (3) wire pickup cable complete with connectore for 930409-3, -4, -6 and -9
10C	75274	Nut-Knurled nut to mount etylus	9		Screw-\#4-40 $\times 1 / \mathrm{s}^{\prime \prime}$ fillieter head ecrew to mount pickup cartridge
		PICKUP ASSEMBLIES For 930409-4 and 930409-6	11	76957	Swivel-Pickup cartridge mount and ewivel assembly for 930409-5, -10 and -11
$\begin{aligned} & 10 \\ & 10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 162A001 } \\ & 490 \mathrm{~B} 001 \end{aligned}$	Pickup-Ceramic pickup complete with two styli Stylue-Oamium tip etylue (. $003^{\prime \prime}$ r., uncaded) for 78 r.p.m.	11	130A001	Swivel-Pickup cartridge mount and ewivel assem bly for $930409-3,-4,-6$ and -9
			12	75809	Spring-Pickup arm counterbalance mpring
10B	490A001	Stylue-Oamium tip etylus ($.001^{\prime \prime}$ r., coded red) for 45-331/3 r.p.m. PICKUP ASSEMBLIES For 930409-5, 930409-10 and 930409-11	13	75810	Bracket-Pickup arm weight adjustment bracket (elide)
			14	76999	Screw-\#6-32 $\times 1 / \mathbf{s}^{*}$ round head ecrew for pickup arm weight adjuatment bracket Screw-\#4x $1 / 4^{\prime \prime}$ binding head eheet metal ecrew to maunt owivel aeeembly in arm
$\begin{array}{\|l\|} 10 \\ 10 \mathrm{~A} \end{array}$	$\begin{aligned} & 75475 \\ & 75497 \end{aligned}$	Pickup-Cryetal pickup complete with two etyli Stylue-Oarnium tip atylus (. $003^{\prime \prime}$ r., uncoded) for 78 r.p.m.	16	75812	Spring-Lock spring (coil type) for height adjuntment ecrew
108$10 C$			17	76913	Screw-Height adjuetment ecrew (hex head\#5.40 thread)
	$\begin{aligned} & 75496 \\ & 74230 \end{aligned}$	Stylus-Osmium tip etylue (. $001^{\prime \prime}$ r., coded red) for 45-331/3 r.p.m. Nut-\#00-112 nut and waeher to mount stylue	16	76943	Spring-Tenaion apring (coil) for landing adjuetment etud
		PICKUP ARM ASSEMBLIES Knob-Stylue eelector knob leet ecrew Screw-\# 2-56 $\times 3 / 16^{\prime \prime}$ headleas eet ecrew for etylu eslector knob	19	76911	Cam-Landing adjustment cam
56	$\begin{aligned} & 76902 \\ & 76998 \end{aligned}$		20	76907	Bracket-Pickup arm mounting bracket complete with pin
			$\begin{aligned} & 20 \mathrm{~A} \\ & 20 \mathrm{~B} \end{aligned}$	75816 75818	Stud-Landing adjuetment etud (eccentric) Nut-Speed nut for landing adjustment etud

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLAGEMENT PARTS

Fig. 29-Picknp Arm Assembly for 930409-5 and -10

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS
Sears, Roebuck \& Co. Set Catalog No. 2028, Chassis 528.230

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS
Sears, Roebuck \& Co. Sets Catalog Nos. 2200, 2202, and 2203

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS
Sears, Roebuck \& Co. Chassis 528.238, Sets Catalog Nos. 2215, 2217, 2218

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS
Sears, Roebuck \& Co. Chassis 757.110, Models 2003, 2004, 2005, and 2006

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS SentinelRadio

When aligning the I.F. slugs use a non-metallic screwdriver.

ALIGNMENT PROCEDURE

Use an accurately calibrated test oscillator with some type of output measuring device.
TO ALIGN 1650 KC OSCILLATOR AND 1400 KC ANTENNA TRIMMERS: Couple oscillator to receiver by; (1) make loop of five turns of No. 20 to 30 size wire, wound on a $2^{\prime \prime}$ or $3^{\prime \prime}$ form; (2) connect this loop across output of oscillator; (3) place test loop near radio antenna. BE SURE THAT NEITHER LOOP OR RADIO MOVES WHILE ALIGNING.

Set recaiver dial to:	TEST OSCILLATOR				Refar to parts layout diagram for location of trimmers mentioned below:
	Adjust tast oscillator frequency to:	Use dummy antenna in saries with output of test oscillator consisting of:		Attach output of test oscillator to	
Any point where no interfering signal is received	$\begin{gathered} \text { Exactly } \\ 455 \mathrm{~K} . \mathrm{C} . \end{gathered}$	0.2 Mfd . Condenser	Higb side to pin 6 grid of 1 R5 tube. Low side to common negative through a .02 MFD blocking condenser.		Adjust each of the 2nd I.F. transformer slugs for maximum output, then adjust each of the 1st I.F. transformer slugs for maximum output.
Rotate gang condenser to minimum capacity	$\begin{aligned} & \text { Exactly } \\ & 1650 \mathrm{~K} . \mathrm{C} . \end{aligned}$	See Alignment Procedure above	See Alignment Procedure above		Adjust $1650 \mathrm{~K} . \mathrm{C}$. oscillator trimmer for maximum output.
Approximately $1400 \mathrm{~K} . \mathrm{C}$.	$\begin{aligned} & \text { Approx. } \\ & 1400 \text { K. C. } \end{aligned}$	See Alignment Procedure \qquad above	$\underbrace{$ See Alignment Procedure above }		Adjust $1400 \mathrm{~K} . \mathrm{C}$. antenna trimmer for maximum output.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Staps	Set rectiver dial to:	Adjust test oscillator frequency to:	Use dummy antenna in series with oatput of test oscillator conslsting of:	Refer to parts layout diagram for location of trimmers mentioned melow:
1	Any point where no Interferling signal is recelved	$\begin{aligned} & \text { Exactly } \\ & 455 \mathrm{~K} . \mathrm{C} . \end{aligned}$	0.2 Mrd . Condenser	Adjust tach of the 2nd 1.F. transformer trimmer adjustment serews for marimum output, then adjust each of the 1at I.F. transformer trimmer adjustment screws for mardmum output.
2	Rotate gang condenser te minimum capaedty	$\begin{gathered} \text { Bractly } \\ 1660 \mathrm{~K} . \mathrm{C} . \end{gathered}$	$\begin{gathered} \text { See } \\ \text { paragraph (B) } \\ \text { above } \end{gathered}$	Adjust $\mathbf{1 6 0 0 ~ K}$. C. oscllimar trimmer for mandmum output.
3	$\begin{aligned} & \text { Approximately } \\ & 1400 \mathrm{~K} . \mathrm{C} \text {. } \end{aligned}$	$\begin{gathered} \text { Approx. } \\ 1400 \mathrm{~K} . \mathrm{C} . \end{gathered}$	$\begin{gathered} \text { See } \\ \text { paragraph (C) } \\ \text { ubove } \end{gathered}$	Adust 1400 K. C. antenpa trimmer for marimuma outpus.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

STEWART-WARNER MODELS 9165-A \& 9165-B

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Stewart-Warner Models $9165-\mathrm{A}$ and $9165-\mathrm{B}$, continued from preceding page.

ALIGNMENT PROCEDURE

1. During the olignment of this receiver, the pointer will hove to be set to o specific frequency. Since the diol scole is on integrol port of the cobinet, the receiver chossis must be in the cobinet for correct positioning of the gong condenser ond pointer.
Before setting the pointer to the desired frequency, it will be necessory to check the position of pointer with respect to the gong condenser. To occomplish this, rotote tuning knob fully counter-clockwise until gong condenser is fully meshed. With gong in this position, pointer should be parallel with bose of cobinet.
If the pointer is not properly positioned, hold the Tuning Knob steody ond move the pointer monuolly to the proper ploce.
2. Before removing shossis from cobinet, it will be necessary to toke off the Volume Control knob, Tone knob, Tuning knob ond cobinet bock ond to remove the two chossis mounting screws of bottom of cobinet. Then turn the tuning shaft until pointer is set to desired frequency for olignment and toking core not to chonge this setting, remove pointer.
3. Connect on output meter ocross the speoker voice coil or from the plote of the 35 C 5 tube to B - (see voltoge chort for convenient connection point) through o 0.1 Mfd . condenser.
4. Connect ground leod of signol generotor to B- lug. CAUTION: If your signol generotor is designed with on AC-DC power supply, connect ground leod to B- lug through o .25 Mfd . condenser. (See voltoge chort for convenient B- connection.)
5. Set tone control to its moximum clackwise position.
6. Set volume confrol of moximum volume position ond use o weok signol from the signol generotor.
7. After olignment hos been completed ond chossis reossembled in cobinet ond pointer properly positioned, check colibrotion over entire dial and should the colibrotion error be objectionoble, repeot procedure, exercising greoter precoution in the initiol setting of the pointer.

DUMMY ANT. IN SERIES WITH SIGNAL GENERATOR	SIGNAL GENERATOR CONNECTION	SIGNAL GENERATOR FREQUENCY	RECEIVER DIAL SETTING	TRIMMER AND SLUG NUMBER	TRIMMER AND SLUG DESCRIPTION	TYPE OF ADJUSTMENT
0.1 Mfd. Condenser	Lug on R.F. Trimmer \#6	455 KC 400 cyele Modulotion	Any point where it does not offect the signol.	1-2	2nd I.F.	Adjust for moximum output. Then repeot odjustment.
				3-4	1st I.F.	
200 Mmfd. Mica Condenser	Externol Antenno Terminol on Loop Frome	1600 KC 400 cycle Modulotion	1500 KC	5	Broodcast Oscillator	Adjust for moximum output.
200 Mmfd . Mico Condenser	Externol Antenno Terminol on Loop Frome	1500 KC 400 cycle Modulotion	Tune to 1500 KC generotor signol	6	Broodeost R.F.	Adjust far moximum output.
200 Mmfd . Mico Condenser	Externol Antenno Terminal on Loop Frome	1500 KC 400 cycle Modulotion	Tune to 1500 KC generotor signol	7	Broodcast Antenno	Adjust for moximum output.

TRIMMER LOCATION CHART

POINTER AND DRIVE CORD ARRANGEMENT

To string dial cord, turn the moin drive drum ta moximum counterclockwise position ond use fol lowing ports:

114955 Clip on end of cord
117057 Cord (2 feet)
505161 Tension Spring

1. All meosurements mode with o volt meter hoving o sensitivity of $\mathbf{2 0 , 0 0 0}$ ohms per volt except where indicoted by ($*$). The ($*$) symbol designotes o vocuom tube voltmeter meosurement.
2. Terminols on loop ontenno ore shorted together to minimize noise signol pickup.
3. Diol tuned to 540 Kc .
4. Volume control set to moximum with no signol.
5. Tone control set of its moximum clockwise position.

NOTE A. The center stud of this twke must be connected to B - to reduce capacity coupling between pins. Oscillation may result if this connection is omitted.

$1-5=$

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

SYLVANIA ELECTRIC PPODUCTS INC.

CHASSIS 1-602-2 and 1-602-3 used in

 MODEL 543 and 593 RADIO CLOCKS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO SYLVANIA CHASSIS 1-601-2,1-601-3 MODEL 513 and 563 TABLE RADIOS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS SYLVANIA CHASSIS 1-604-1
used in Model 433 Radio

Intermediate Frequency 455 KC

1. Remove control knobs, station selector pointer and base. Remove station selector pointer by gripping it with either a bent wire hook or needle nose pliers inserted in the center slots.
2. Remove the four screws securing chassis and dial caps to the cabinet. Note assembly of the handle and dials, and that chassis
slides through grooves in cabinet. The chassis may now be removed.
3. To facilitate calibration, turn volume control until it clicks "Off" and Station Selector until tuning capacitor is fully meshed. Line up indicator marks accordingly, and press on knobs.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS UNITED MOTORS SERVICE

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS $\left(\begin{array}{c}\text { VIITED } \\ \text { SERVICE } \\ \text { MOTORS }\end{array}\right)$ UNITED MOTORS SERVICE OLDSMOBILE DELUXE MODEL 982990

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS UNITED MOTORS SERVICE SERVICE INSTRUCTIONS - OLDSMOBILE SUPER

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS UNITED MOTORS SERVICE Additional alignment data is on page 146.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

 UNITED MOTORS SERVICEDIVISION OF GENERAL MOTORS CORPORATION
Alignment procedure for models listed below. For circuit diagrams and alignment points see corresponding models as shown on pages 141 to 145.
Volume Control Position .-........ Maximum Volume

Generator Output

BUICK 981320

Steps	Series Condenser or Dummy Antenna	Connect Signal Generator to	Signal Generator Frequency	Tune Receiver to	Adjust in Sequence For Max. Output
1	0.1 Mfd.	6BE6 Grid (Pin \#7)	262 KC	High Frequency Stop	A, B, C, D
2	0.000082 Mfd .	Antenna Connector	1615 KC	High Frequency Stop	*E, F,
3	0.000082 Mfd .	Antenna Connector	1000 KC	Signal Generator Signal	J, K
4	0.000082 Mfd .	Antenna Connector	1615 KC	High Frequency Stop	F, G
5	0.000082 Mfd .	Antenna Connector	1000 KC	Signal Generator Signal	L**

BUICK 981321

| 1 | 0.1 Mfd. | I2BE6 Grid (Pin \#7) | 262 KC | High Frequency Stop | A, B, C, D |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| 2 | 0.000082 Mfd. | Antenna Connector | 1615 KC | High Frequency Stop | *E, F, G |
| 3 | 0.000082 Mfd. | Antenna Connector | 1000 KC | Signal Generator Signal | J, K |
| 4 | 0.000082 Mfd. | Antenna Connector | 1615 KC | High Frequency Stop | F, G |
| 5 | 0.000082 Mfd. | Antenna Connector | 1000 KC | Signal Generator Signal | L** |

OLDSMOBILE MODEI. 982990

1	0.1 Mfd .	12BE6 Grid (Pin \# 7)	260 KC	High Frequency Stop	A, B, C, D
2	0.000068 Mfd .	Antenna Connector	1615 KC	High Frequency Stop	*E, F, G
3	0.000068 Mfd.	Antenna Connector	1000 KC	Signal Generator Signal	J, K
4	0.000068 Mfd.	Antenna Connector	1815 KC	High Frequency Stop	F, G
5	0.000068 Mfd.	Antenna Connector	1000 KC	Signal Generator Signal	**L
OLDSMOBILE MODEL 983004					
1	0.1 mfd .	12BE6 Grid (Pin 7)	280 KC	* High Frequency Stop	A, B, C (Max.)
2	0.1 mfd .	-12BE6 Grid (Pin 7)	280 KC	High Frequency Stop	D (Min.)
3	0.000068 mfd .	Antenna Connector	1615 KC	High Frequency Stop	*E, F, G (Max.)
4	0.000068 mfd .	Antenna Connector	800 KC	Signal Generator Signal	J, K (Max.)
5	0.000068 mfd .	Antenna Connector	1615 KC	Signal Generator Signal	F, G (Max.)
6	0.000068 mfd .	Antenna Connector	1000 KC	Signal Generator Signal	**L
MODEL 984817					
1	0.1 Mfd .	6BE6 Grid (Pin \#7)	260 KC	C High Freq. Stop	A, B, C, D
2	0.000068 Mfd.	Antenna Connector	1615 KC	C High Freq. Stop	*E, F, G
3	0.000068 Mfd.	- Antenna Connector	1000 KC	C Signal Gen. Signal	J, K
4	0.000068 Mfd.	Antenna Connector	1615 KC	C High Freq. Stop	F, G
5	0.000068 Mfd .	Antenna Connector	1000 KC	C \quad Signal Gen. Signal	L**

[^0]
WEBCOR DISKCHANGERS Models 121, 122, 123, 124, 125

BASIC MODEL 121 DISKCHANGER

DESCRIPTION

Model 121 is a three speed Automatic record changer. Simple in design and operation, it provides automatic playing of up to a $1^{\prime \prime}$ stack of 7-inch, 10 -inch and 12 -inch records at speeds of $331 / 3$, 45 or 78 rpm . Model 121 returns the Pickup Arm to the Rest position and automatically shuts off after playing the last record.
The motor switch is a function of the Tone Arm position and the power is off when the Tone Arm is on the Tone Arm Rest. Placing the arm on the record or depressing the reject button starts the motor.

FOR "MANUAL" RECORD PLAY

Lift the Record Ballast Arm and swing it and the Automatic Index Finger away from the spindle. When both arms are in full "open" position use a slight downward pressure to firmly seat them in place. Move the Speed Control Lever and Cartridge Knob to the correct speed and needle for the record being played and then place the needle gently on the record. To stop the mechanism at any time place the tone arm on its rest.

OPERATION

FOR "AUTOMATIC" RECORD CHANGE

1. Lift the Record Ballast Arm and swing it away from the spindle and exert a slight downward pressure until it "latches."
2. Place up to a l-inch stack of any one size of records on the Spindle and swing the Record Ballast Arm back to the spindle allowing it to drop in position with the spindle in the hole. The Automatic lndex Finger will remain away from the record until the change cycle starts. It will then move in to feel the diameter of the record and automatically index the pickup needle to the proper playing position.
3. Then turn Needle Tip Selector to correct position for records being played. Move the Speed Selector Lever to the correct speed for the records being played and depress the START - REJECT control. (Hold down until Tone Arm moves.)
(Continued on the next thirteen pages)
147

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

SERVICE INSTRUCTIONS Model 121, continued.

WEBSTER-CHICACO \%

THE CHANGE CYCLE

A 4 pole shaded pole motor is used to drive the changer mechanism. The power is transmitted to the turntable by a rubber rim idler wheel. Turntable speed is determined by the positioning of the wheel on one of the three "steps" of the drive sleeve on the rotor shaft. When the speed selector is turned to " 33 " the idler wheels is positioned on the " 33 step" or contacts" the smallest diameter portion of the sleeve. Turning the speed selector to " 78 " positions the wheel on a larger diameter of the sleeve (3rd step down).
It is recommended that the change cycle operation be observed by rotating the turntable by hand. The action described below can then be readily followed and the function of each part more easily understood. To observe the setdown action a single record should be placed on the spindle to correctly position the index arm for proper setdown of tone arm.

1

As the tone arm tracks on the record toward the spindle the velocity trip arm is moved inward by the action of the weighted friction clutch on the tone arm shaft. When the tone arm follows the eccentric groove at the finish of record the velocity trip arm is also moved suddenly inward and "trips" velocity trip.

In this tripping action the actuating pawl on the main cam is released from the velocity trip and is able to engage the cam drive gear which is continuously rotating with the motor driven turntable. The drive gear now locked with the main cam drives the changer through the change cycle. The main cam is the heart of the change mechanism.

The main corm actuates the raising lever causing it to raise and pivot outward. The motion is transmitted to the tone arm by a clutch action between the raising disc and the set down plate which is attached to the tone arm shaft. The tone arm is then raised and carried on its outward excursion.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

WEBSTER.CHICAGO \%

Model 121, continued.

4

When the tone arm has reached its farthest outward excursion the main cam, by reason of its contour, causes the spindle lever plate to move upward at point of contact with spindle actuating rod. This upward movment forces the actuating rod up into spindle moving the push-oft finger forward, resulting in the lowering of the records.

5

After the record has dropped the raising lever (following the recessed contour of the main cam) carries the set down plate, and consequently the tone arm, inward. This travel is stopped when the $7^{\prime \prime}, 10^{\prime \prime}$ or $12^{\prime \prime}$ extension of the plate contacts the stop ear on the set down disc assembly. The position of this ear was predetermined when the record (now on the turntable) rested on the spindle step and influenced the position of the index arm. The stop ear, being a function of the index arm, stops the set down plate at the proper point so when the raising lever returns and lowers to its normal position the tone arm lowers and correctly sets down on the lead in groove of the record. (The slipping clutch allows the Raising Disc and Lever to continue its inward travel when the Set Down Flate card Tone Arm is stopped)

6

The velocity trip is also returned to its normal position by the reset points on the drive gear. The hooked end on the trip disengages the actuating pawl from the drive gear thus unlocking main cam and drive gear. The changer has now completed its change cycle.

149

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS
 WEBSTER-CHICAGO
 Model 121, continued.
 SERVICE INSTRUCTIONS

6

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

\section*{| TROUBLE - SOURCE - ADJUSTMENTS |
| :---: |
| NEEDLE SET-DOWN POINT IS INCORRECT |}

To Adjust:

1. Place a $7^{\prime \prime}$ record on spindle and permit index finger to rest against edge of the record.
2. With Speed Selector in " N " position, press the reject button and revolve turntable by hand, thereby putting changer through change cycle. When record has fallen to turntable and tone arm is at its farthest inward position, it will begin its downward travel to set on record. Stop rotation of turntable when needle is approximately $1 / 4^{\prime \prime}$ above record.
3. Check to see if needle is directly above lead-in groove of second If not adjust by turning screw beneath tone arm as indicated. (Clockwise turning of screw will move tone arm away from spindle.)
4. If adjustment on $7^{\prime \prime}$ is correct, $10^{\prime \prime}$ and $12^{\prime \prime}$ set down will also be correct.

ERRATIC INDEXING - NO LOCKOUT

1. If the Tone Arm swings into the center of a record and cycles or erralic indexing occurs, the stop ear on the Set Down Disc Assembly is bent and is not stopping the Set Down Plate. The ear should be bent back into position so that it stops the Plate at the correct set down point.
2. If the arm does not come to rest after the last record has been played:
Check to see if the stop ear on the set down disc is stopping the set down plate at the lockout position. If not, bend the ear slightly so it contacts the plate at lockout position. Recheck set down.
3. See "Tone arm swing" adjusiment below.

TONE ARM WILL NOT SWING FAR ENOUGH OUTWARD TO SET ON THE TONE ARM REST PROPERLY

1. Bend the stop ear on the Set Down Plate so that the Tone Arm swings out no further than $1 / 2^{\prime \prime}$ beyond the Tone Arm Rest before starting its inward travel. (Bending the ear up will increase the swing - bending down will restrict it.) @.
2. If the set down is affected by this adjustment, readjust set down.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

TONE ARM WLLL NOT CLEAR REST DURING CHANGE CYCLE

To Adjust:

1. The tone arm height is a function of the contour of the RAISING LEVER. This lever is properly formed at the factory during production of the record changer.
2. For vernier adjustment of tone arm height, a set screw is accessible through a hole on the top and at the rear of the tone arm.
3. The tone arm should clear the tip of the tone arm rest by $1 / 16^{\prime \prime}$ to $1 / 8^{\prime \prime}$ during the change cycle. Clockwise turning of the adjusting screw will raise the arm -counter-clockwise turning will lower it. (Ccution: Do not turn excessively.)
4. Lift the tone arm and place a dab of Purple Glyptal (or plastic cement) on the base of the screw after making this adjustment so it will not move, once accurately adjusted. (Do not use a permanent type of cement and be sure it is not placed on the shoulder or end of the screw.)

TONE ARM WILL NOT SET DOWN ON SINGLE RECORD ON TURNTABLE

1. Adjust by tone arm method. If this fails follow 2.
2. Although the raising lever has in most cases been properly formed at the factory it may be necessary to very slightly bend the raising lever to allow the needle to properly set down on a single record on the turntable.
This is very seldom necessary and most height adjustments can be made by the tone arm adjustment.

WILL NOT PLAY RECORDS MANUALLY

1. If the Changer trips and cycles at the end of a record the Trip Arm stop ear on the Set Down Disc Assembly is not restricting the movement of the Arm toward the Velocity Trip. The stop on the Disc Assembly or the finger on the Trip Arm should be bent so that the Arm cannot travel inward when the changer is in a Manual position. (1).
2. The Velocity Trip does not have proper clearance from Main Cam or Drive Gear. See "Changes Records Prematurely", and "Fails to Change Records Automatically".

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS SERVICE INSTRUCTIONS
 Model 121, continued. WEBSTER-CHICACO

 0| TROUBLE-SOURCE-A DJUSTMENTS |
| :--- |
| INCORRECT TURNTABLE SPEED |
| 1. Defective Idler Wheel or Wheel is cocked at am angle. |
| 2. The Idler Wheel does not rest on the steps of the Drive |
| Sleeve correctly. To adjust place the Speed Selector |
| in 45 rpm position, loosen nut as indicated, then turn |
| screw to raise or lower Idler Wheel so that its edge is |
| vertically centered on the 45 step of the Sleeve. (Sec- |
| ond Step from top.) Tighten Nut. |

ERRATIC SPEED

1. Delective Idler Wheel. (Flat spots.)
2. Dirt or grease on rubber rim of the Idler Wheel, Drive Sleeve or on the rim of the Turntable. Cleanse with alcohol.
3. If the rubber composition of the Idler Wheel is slick and shiny replace with new wheel.

STALLS DURING CHANGE CYCLE

1. See Erratic Speed (Par. 2 and 3).
2. Check position of Idler Wheel on Drive Wheel Sleeve as in "Incorrect Speed" (Par. 2) above.
3. See "Does not push of records", Spindle adjustment may be required.
4. Check for low line voltage.
5. In later models the Idler Wheel Slide Plate Aissembly can be re-positioned by loosening screws holding it to mainplate. The idler Wheel can be placed in firmer contact with the Drive Sleeve by moving the slide plate assembly accordingly. (Caution: Do not move assembly excessively so that the Idler presses too tightly against Sleeve thus affecting correct speed.)

DOES NOT TURN ON OR TURNTABLE DOES NOT ROTATE WHEN TONE ARM IS PLACED ON RECORD OR WHEN REJECT BUTTON IS DEPRESSED

1. Be sure Speed Selector is on a speed setting.
2. Reject Lever stroke is insufficient. Lever can be bent slightly ot points indicated by arrows to increase the Lever stroke so that the AC switch tip clears the extension of the Set Down Plate when reject button is depressed. Slight daylite should show between flag end of Lever and shaft of Reject Button.
3. Defective AC Switch or defective Motor.
4. Binding or frozen motor.
5. Check idler wheel adjustment. See "Incorrect turn-
 table speed" above.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

WEBSTER-CHICAGO
Model 121, continued.
SERVICE INSTRUCTIONS

MISCELLANEOUS TROUBLES

GLIDE-IN ON 12" RECORDS

The term "glide-in" is used to describe the action of the tone arm and needle when the needle glides over the first two or three grooves of the record before seating itself properly. If glide-in occurs:
The pickup cord may be dressed too tight or in such a manner that it interferes with the free movement of the pickup arm. Make certain there is sufficient play in the pickup cord.

SLIDE-IN OR NEEDLE JUMPS GROOVES

Slide-in describes the condition where the needle will touch the first groove of the record properly but will jump the grooves forward or back as though the needle pressure was too light.

To correct slide-in, check for:

1. Incorrect needle tip. The standard " 78 " tip will be especially likely to jump grooves of α microgroove record. Be certain the "micro" or " $35-45$ " tip is used for either the $331 / 3$ or 45 rpm microgroove records.
2. Chipped or damaged needle.
3. Tight pickup cord.
4. Needle pressure too light.

MORE THAN ONE RECORD IS DROPPED DURING A CHANGE CYCLE

1. Foreign matter in spindle recess causing the latch to stick.
2. Exceptionally thin records.
3. Bent spindle.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS SERVICE INSTRUCTIONS
 Model 121, continued.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS PARTS LIST-ABOVE MAINPLATE
 (NUMBERS REFER TO EXPLODED VIEW)

Fig. No. Part No.	Description
- $11 \times 956-\mathrm{E}$	Model B121 Record Ballast Arm and Index Finger Assembly
$1 \mathrm{~A}-\underset{11 \mathrm{l} 9956-\mathrm{LY}}{11 \mathrm{E}}$	Model F121 Model B121 Becord Record Ballast Arm
11X925-LY	Model Fl21 Record Ballast Arm
IB -4111146	Knurled Pin for 11X956,........
$\begin{aligned} & \text { 1C }{ }_{10} 24 \mathrm{PDO} 48 \\ & 1 \mathrm{C} 299-\mathrm{E} \end{aligned}$	Rubber Cushion for Index Finger Model B121
- ${ }_{42 \times 299-\mathrm{LY}}$	Model F121 Index Finger Arm
$2-25 \mathrm{P} 454$	Rubber Washer (Early models only)
$3-11 \times 878-\mathrm{E}$	Model B121 Turntable Assembly
$4-11 \times 976$	Spindle
$5-50 \mathrm{P} 221$	Retainer for Turntable
$6-25 P 289$	Cup Washer - Spindle Mounting
$7-25 \mathrm{P} 403$	Lack Washer - Spindle Mounting
$\begin{array}{ll} 8 & -26 \mathrm{P} 687 \\ 9 & -11 \times 132 \end{array}$	Nut - Spindle Mounting ldler Gear Assembly
9A - 41 P 333	Shoulder Screw ...
$9 \mathrm{~B}-47 \mathrm{P} 024$	Idler Gear - Large
${ }_{9}^{9 \mathrm{C}}$ - ${ }^{45 \mathrm{P} 342}$	Coupler for 11X132 Idler Gear - Small
$9 \mathrm{E}-25 \mathrm{P} 284$	Washer for 11X132
$9 \mathrm{~F}-{ }^{25 \mathrm{P} 222}$	Lock Washer for 11X132
9 G - 26 P 046	Nut for 11×132
10 - 26P1045-1	Mounting Screw
11 -50P252	Mounting Clip
$12-46 \mathrm{P} 307$	Mounting Spring
$13-25 P 269$	Washer for Bearing Race
$14-11 \times 058$	Turntable Bearing Race .
$\begin{array}{ll}15 & -25 P 269 \\ 16 & -45 P 191\end{array}$	Washer for Bearring Race
$17-21 \times 344$	Tone Arm Hinge and Shaft Assembly
*17A - 21×331	Tone Arm Hinge (See footnote)
178 -25P558	Grommet
17C - 25 P 257	Washer
$17 \mathrm{E}-46 \mathrm{P} 299$	Compression Spring
$17 \mathrm{~F}-26 \mathrm{Pl245}$	Adjusting Screw - Set Down
${ }_{17 \mathrm{H}}^{17 \mathrm{G}}-21 \times 335 \mathrm{l}$	Tone Arm Counter Balance
$171-26 \mathrm{P} 1267$	Pivot Screw
$17 \mathrm{~J}-26 \mathrm{Pl253}$	Screw
${ }^{*} 17 \mathrm{~K}-21 \mathrm{X} 343 \mathrm{~L}$	Tone Arm Shaft (See footnote)
$\dagger 18$ 二 $11 \times 981 \mathrm{E}$	Adjusting Screw - Height Model B121
11X981-LY	Model F121 Housing and Tone Arm Rest Assembly (See footnote)
$\dagger 18 \mathrm{~A}-{ }_{42 \mathrm{P} 296 \mathrm{LK}}^{42 \mathrm{~L}}$	Model ${ }_{\text {M121 }}$ Model F121 Housing (See footnote)
18B-49P178	Latch Lever
18C-27P278	Pin ..
18D-46P303	Tension Spring
$18 \mathrm{E}-45 \mathrm{Pl} 1511$	Spring Anchor Plate
$\begin{aligned} & 18 \mathrm{~F}-26 \mathrm{PF47} \\ & 19 \end{aligned}$	Mounting Screws - Housing
42P300-1LY	Model F121 Tone Arm
19A - 45 Pl 1509	Tone Arm Latch Plate
19B-26P1191	Self Tapping Screw Cartridge (Order from Distributor by Mtgrs. name and number)
$19 \mathrm{D}-191-11 \times 915-$	Complete Turnover Mechanism Assembly Screw - Cartridge Knob
19E-49P176-E	Model $\mathrm{Bl21}$ Cartridge Knob
19G-11X912	Mounting Bracket
19H-11 ${ }^{\text {9007 }}$	Hub and Mounting Plate
199	Spring
$\begin{aligned} & \text { 19J } \\ & 19 \mathrm{~K} \\ & 20 \mathrm{PP} 1764 \end{aligned}$	Screws - Cartridge Mounting Pickup Cord and Lug Assembly
$\begin{array}{rr} 20 & -78 \mathrm{P5} 93-1 \\ 78 \mathrm{P} 593-2 \end{array}$	Model Model B121 F12
21 -49X171-E	Model 121 Reject Button
$2{ }^{\text {49X171-LY }}$	Model F121 Reject Bution
$23-42 \times 290-\mathrm{E}$	Model 12121 Spreed Selector
	Model F121 Speed Selector
$24-25$ P447	"C" Washer

[^1]
MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS SERVICE INSTRUCTIONS
 Model 121, continued.
 WEBSTER-CHICAGO

 *

158

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS WEBSTER.CHICAGO

PARTS LIST-BELOW MAINPLATE

(NUMBERS REFER TO EXPLODED VIEW)

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS SERVICE INSTRUCTIONS Model 121, continued. WEBSTER-CHICACO REPLACEMENT OF PARTS
 REPLACEMENT OF THE IDLER WHEEL SLIDE PLATE ASSEMBLY

CARTRIDGE REPLACEMENT

1. To remove cartridge raise the Tone Arm to a vertical position.
2. Remove the pickup lead lugs from the terminals of the cartridge.
3. Unscrew the mounting screws so that the cartridge cam be removed from the Arm.
4. Replace with like Cartridge ordering through your distributor. Specify the Manufacturer of the Cartridge and his number.
5. Be sure cartridge is aligned correctly on bracket so that needle setdown is correct for both needles. If setdown is not correct for both needles after installation realign cartridge on bracket. (For turnover cartridges.)

REPLACEMENT OF THE MOTOR ASSEMBLY

1. The Four pole Motor is mounted suspended from the Mainplate. Remove the " C " Washers from the mounting posts on the Motor Assembly.
2. Support Motor Assembly with one hand while removing washers and lower it from the Mainplate.
3. Replace the new Assembly reversing above procedure.

REPLACEMENT OF TONE ARM BRACKET AND SHAFT ASSEMBLY

1. Unsolder Cartridge leads from terminal strip beneath Mainplate.
2. Loosen the Bristol Screw in the hub of the Set Down Plate.
3. Remove the Weighted Clutch, Trip Arm, Set Down Plate and Raising Disk by sliding them of the bottom of the Tone Arm Shaft and pull the shaft out of the Changer.
4. Replace by reversing procedure.
5. Remove the Motor Assembly as instructed above.
6. Remove the Idler Wheel.
7. Remove the Retainer Clip (or "C" Washer) at the bottom of the Slide Plate Assembly where the Cam and Stud Assembly fastens to the Speed Selector Linkage Assembly.
8. Drop the Slide Plate Assembly from the Mainplate by removing the Mounting Screws holding the Assembly to the Mainplate.
9. Replace using reverse procedure.

LUBRICATION

Model 121 Record Changers leave the factory completely oiled and lubricated. Under normal conditions this should be sufficient for approximately one year or 1,000 hours of operation.

Do not permit oil or grease to get on the rubber Idler Drive Wheel, the Motor Sleeve, Turntable Drive Rim, the Automatic Trip Arm clutch or Raising Disc clutch. Any oil or grease on these points should be removed using alcohol. The recommended lubricants and points of lubrication are as follows:

A - No. 10 OIL (Apply With Small Oil Can or Medicine Dropper)

1. Motor Bearings - (l drop).
2. Pickup Arm Shaft.
3. Ball Bearing Assembly.

B - A NON FLUID LUBRICANT (Apply With Small Brush)

1. Idler Wheel Link.
2. Turntable Shaft Stud.
3. Pickup Arm Hinge Pins.
4. Cam and Follower - Slide Plate Assembly.
5. Teeth of Main Cam Actuating Gear.
6. Track of Main Cam Gear.
7. Teeth of Large and Small idler gears.
8. Raising lever Bracket bearing surface.
9. Spindle adjusting nut ot bottom.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

tructare
 WESTERN AUTO SUPPLY COMPANY MODEL D1234B

Factory Model 527A96-254-1

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Western Auto Supply Company

ALIGNMENT PROCEDURE

- Loop must be connected and set volume to maximum.

NOTE: Capacitor C4 is included in filpec.

SIGNAL GENERATOR				TUNER SETTING	ADJUST FOR MAXIMUM OUTPUT	INPUT FOR 50-MHLLIWATT OUTPUT
Frequency	Coupling Capacitor	Connection to Radio	Ground Connection			
455 kc .	-1 0 af	12BE6, Pia 7	\mathscr{y} 0 0 0 y	Capacitor fully open (plates out of mesh)	Top and botmom Cores in output and input I.F. cans	65 microvolts
1620 kc .	- 1 mf	12BE6 Pin 7		Capacitor fully open (plates our of mesh)	Oscillator trimmer C1-D on gang	70 microvolts
535 kc.	. 1 mif	12BE6, Pin 7	5	Capacitor fully closed	Check for adequate range	70 microvolts
1400 kc.	-	Lay generator lead near back of cabinet	$\begin{aligned} & \text { m } \\ & z \underset{y y y}{z} \end{aligned}$	Tune in 1400 kc. signal	Antenna trimmer C-1C on gang	$200 \text { to } 400$ microvolts
400 cycles	. 1 min	12AT 6, Pin 1		--	-----	. 06 volts

Dial Stringing Diagram

$1-2$

MODER D-2205

WESTERN AUTO SUPPLY CO.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS WESTERN AUTO SUPPLY CO. MODEL D-2226A

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

WESTERN AUTO SUPPLY COMPANY MODEL D-2383

TRUETONE BROADCAST AND SHORT WAVE RECEIVER

ALIGNMENT PROCEDURE

To set dial pointer, turn tuning gang fully closed and set left hand edge of the pointer $11 / 16$ fron the left hand edge of the dial backplate.

Use isolation transformer if available. If not connect a. i mpd. cap. in series with low side of signal generator and B -

Volue control should be at maximum position. Output of signal generator should be no bigher than necessary to obtain an output reading. Use an insulated alignment screwdriver for adjusting.

DUMMY ANTENNA		SIGNAL GENERATOR FREQUENCY	8AND SWITCH POS.	$\begin{aligned} & \text { RADIO } \\ & \text { DIAL } \\ & \text { SETTING } \end{aligned}$	OUTPUT METER	ADJUST	REMARKS
. 0519FD	High side to rear stator of tuning gang. Low side to chassis.	455K C	BC	Tuning gang fully open.	Across voice coil.	$\begin{array}{ll} \text { A1, A2 } \\ \text { A3, } & \text { A4 } \end{array}$	Adjust for maximum output If isolation transformer is not used reduce dumey antenna to . 001 MFD to reduce huv modulation.
.05MPD	11	1650KC	BC	"	"	A5	Adjust for maximum output
	Loop	1400KC	BC	Tune for max. signal	"	A6	Fashion loop of several turns of wire and radiate signal Into loop of receiver. Adjust for maximum output.
	LOOP	600 KC	BC	```600K C (2 3/16" from left edge of dial backplate.)```	"	A7	Adjust for maximum output
400Ω Carbon Resistor	High side to external antonna lead. Low side to chassis.	18.3MC	8 \%	Tuning gang fully open.	"	18	Adjust for maximum output
$\begin{aligned} & 400 \Omega \\ & \text { Carbon } \\ & \text { Resistor } \\ & \hline \end{aligned}$	"	16MC	8	Tune for max. signal	${ }^{17}$	A9	Adjust for maximun output

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS Westinghouse chassis v-2157-10
MODELS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS Westinghouse ciassis v-2157-11, v-2157-12 MODELS H-385T5, H-386T5 H-387T5, AND H-388T5

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS Westinghouse chassis v-2164-2

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS ZENITHRRAD\|OCORPORAT\|ON COBRA-MATIC RECORD CHANGERS MODELS S-14053, S-14054, S-14056, and S-14057

GENERAL DESCRIPTION

The Zenith Models S-14053, S-14054, S-14056 and S-14057 Record Changers are designed to play standard 78, 45, 33-1/3 and 16-2/3 RPM records of standard commercial dimensions. With few minor exceptions these four changers are alike electrically. The S-14054 is the basic record changer. S-14053 is practically identical to S-14054 except that it has added parts for the stroboscope feature. The S-14057 is very similar to $\mathbf{S}-14054$ except that it is the export version, it has a $50 / 60$ cycle motor and minor electrical changes.
The $\mathrm{S}-14056$ is similar to the $\mathrm{S}-14053$ except that it is the export version, it has a $50 / 60$ cycle motor and minor electrical changes.
The S-14053 deluxe domestic changer as well as the S14056, a deluxe export changer have an added feature incorporated in their mechanism in that they have a stroboscope built in, this enables the most discriminating user to adjust the record speed to an extremely precise point.

Features of these changers include playing and automatically changing as many as ten $12^{\prime \prime}$ or ten $10^{\prime \prime}$ records. Ten inch and twelve inch records of the same type cannot be intermixed.

A full stack of $7^{\prime \prime}$ 33-1/3 RPM, or a full stack of $7^{\prime \prime} 45$ RPM records (with adapter inserted in the records) can also be played on this changer. These changers do not shut off after the last record, however, all that is required to turn the changer off is to move the speed change lever (24) to OFF position.
Connect this changer only to an outlet supplying 117 volt 60 cycle A.C. unless specified otherwise. Power consumption is 20 watts.

LOADING THE RECORD CHANGER

1. Pull straight up on the record pressure arm until the record pressure arm clears the spindle. Swing the record pressure arm towards the front of the changer until pins in pressure arm shaft (1) drop into locating slot on record pressure arm housing.
2. Changer will automatically play ten $12^{\prime \prime}$ either standard or Long Play, ten $10^{\prime \prime}$ either standard or Long Play or ten 7" Long Play or Fine Groove records.
NOTE: Standard, Fine Groove and Long Play records cannot be played in the same stack of records. Speed change lever (24) must be re-set for each type of recording.
(Continued on the next seven pages) 171

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ZENITH Record Changers Models S-14053 to S-14057, continued

3. Place records on spindle and lower them to offset shelf. Level records and replace record pressure arm (1) over spindle and lower this until it rests on the top of the record stack.

To play standard 78 RPM recordings:

1. Motor speed control lever (24) must be set to 78 position. This will set the record changer to proper speed position and cause the turntable to rotate.
2. Set-up lever (33) must be moved to the size records being played.
3. Place the changer in cycle by depressing record change switch knob (37). The changer will play the remaining records automatically. The changer will continue to play the last record until speed change lever (24) is moved to OFF position.

To play 33-1/3 RPM records:

1. Motor speed change lever (24) must be in $33-1 / 3$ position.
2. Set-ud lever (33) should then be moved to either $12^{\prime \prime}$, $10^{\prime \prime}$ or $7^{\prime \prime}$ position depending on the size record being played.

To play Fine Groove (45 RPM) records:

1. Speed change lever (24) should be moved to 45 position and set-up lever (33) should be in $7^{\prime \prime}$ position. It must be remembered that these records are manufactured with a $11 / 2^{\prime \prime}$ spindle hole so it is essential that a record adapter be inserted into each 45 RPM record to be played. This is necessary to reduce the spindle hole to conventional size.

172
S-14054-Record Changer Top View with Turntable Removed

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ZENITH Record Changers Models S-14053, etc., continued

REJECTING

To reject a record anytime, while the changer is operating, depress record change switch button (37) and release. This will automatically cause the record changer to go through cycle and begin playing the next record.

STOPPING

To turn off the record changer all that is required is to move the speed shift lever (24) to OFF position.

UNLOADING

Lift the record pressure arm (1) and swing it to the front until the pin on the shaft drops into the locating groove on record pressure arm shaft housing. Lift stack of records straight up on spindle.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ZENITH Record Changers Models S-14053 to $\mathrm{S}-14057$, continued

MANUAL OPERATION

To play single records or home recordings, lift up the record pressure arm and turn it toward the front of the changer. Place record on spindle and lower to the spindle shelf. Gently push record towards record pressure arm shaft and lower to turntable. Move speed change lever (24) to proper speed for type of record being played and move set-up lever (33) to manual position. Pick up tone arm and place the needle on the lead-in groove of the record.

DESCRIPTION OF CYCLING

The motor shaft contacts drive wheel assembly (38) and causes it to rotate by friction contact with its rubber surface. Drive wheel assembly (38) drives idler wheel (10). The underside of the turntable is in contact with idler wheel (10) and is driven in this manner. Speed of the turntable is controlled by changing the position of the idler wheel (10) on drive wheel (38). When idler wheel is moved to the center of drive wheel (38) it will rotate more slowly than when moved to the outer edge. In this manner the turntable can be driven at any speed from 10 to 85 RPM. Minor adjustments for proper tonal pitch can be made by simply moving speed change lever (24) back and forth to compensate for turntable speed which may vary due to line voltage changes. When record change button (37) is depressed it energizes solenoid (78) which then attracts trip pawl assembly (74). The same thing occurs when the forward movement of the tone arm causes friction lever and weight assembly (68) to contact the sliver plated contact on trip switch assembly (69). When gear segment (119) is released, gear pawl spring (42) causes the gear segment (119) to engage the rotating pinion gear under the turntable thus causing clutch assembly (47) to rotate.

As clutch ássembly (47) rotates, tone arm lift lever (56) swings in such a manner that it contacts tone arm lift pin and raises the tone arm. Simultaneously, tone arm link and stud assembly (66) slides towards, and contacts one finger of tone arm lever assembly (59) forcing the tone arm towards the outer edge of the turntable and then on its return swing contacts the other finger of tone arm lever assembly (59) swinging the tone arm back over the records. The position to which it swings the tone arm over the records is determined by the position of record size discriminator (64). There are three steps on the record size discriminator (64) which determines set-down position for $7^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$ records. The tone arm lift lever (56) returns and releases brake lever assembly (60) which keeps the tone arm from moving erratically during cycle. Simultaneously, ejector lever and link assembly (42) rotates and this in turn causes the spindle shaft to rotate and the ejector cam to push the record off the spindle shelf. Operation of the tone arm set-down adjustment can be observed by raising the tone arm so the adjustment mechanism can be viewed.

VELOCITY TRIP

This changer is provided with what is commonly known as a velocity trip rather than a ratchet and positive trip mechanism. A velocity trip depends for the tripping action on the rate of forward motion of the pickup arm with respect to the turntable rotation. The changer will trip only when the tone arm advances more in one revolution

SPEED INDICATOR ADJUSTMENT MODELS S-14054 \&s S-14057

It is possible that the speed of the record changer may not conform to the speed stop on escutcheon (23). Proper adjustments can be made in the following manner. Put a stroboscopic disc on the turntable, adjust speed change lever (24) until the turntable is turning at exactly 78 RPM. Stop the record changer by pulling the AC plug, remove the turntable, loosen the two adjusting screws (18), (19) and move speed change lever (24) so that the point on the control knob indexes exactly at the 78 mark on the escutcheon. Then re-tighten adjusting screws (18), (19) and replace the turntable. The turntable should now rotate at exactly 78 RPM, however, as a precaution, again check with the stroboscope disc. On models equipped with the built in stroboscope disc mechanism, it can be used instead of a disc placed on the turntable.

Tone Arm Friction Lever Detail SET DOWN ADJUSTMENT
When adjusting the tone arm for proper set-down on the edge of the record, move set-up change lever to $7^{\prime \prime}$ position, place a $7^{\prime \prime}$ record on the turntable, turn the record changer through cycle by rotating the turntable by hand. Watch closely where the needle point of the Cobra cartridge lands on the record and adjust tone arm set-down adjustment screw (104) until proper landing position is obtained

Tone Arm Set-Down and Height Adjustments

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ZENITH Record Changers Models S-14053 to $\mathrm{S}-14057$, continued

TONE ARM HEIGHT ADJUSTMENT

The tone arm height adjustment determines vertical rise of the tone arm. If the tone arm does not rise sufficiently it will not play a full stack of twelve records. On the other hand, if the tone arm raises too high it may hit the records resting on the record shelf. Set the tone arm height adjustment screw (105) so that the needle clears twelve unwarped records on the turntable. The tone arm housing must not hit the under side of the records on the record shelf when the changer is cycled after adjustment.

TRIP CONTACT ASSEMBLY

For proper automatic rejecting, silver contact No. 2 on trip switch assembly (69) should be in proper relation to silver contact No. 1 on friction lever (68). The adjustment should be made with the record changer resting on the side nearest to the idler wheel and trip assembly (38). The turntable should be rotated sufficiently to move oscillating lever (3) and stud to its maximum upward travel. The distance between the silver contact No. 1 on the friction lever (68) and silver contact No. 2 on trip switch (69) should be $1 / 16^{\prime \prime}$. If the distance is greater or less than $1 / 16^{\prime \prime}$, the support for the silver contact on trip switch assembly (69) should be bent until this $1 / 16^{\prime \prime}$ gap is attained.

Trip Contact Adjustment

SPINDLE

The spindle on this record changer is composed of five separate parts. Spindle shaft and ejector cam are pressurefit together and if either breaks, they cannot be replaced since their assembly is a machine operation. The spindle housing is composed of two separate portions which once again are pressure-fit together and require a machine operation for assembly. It is possible that spindle cap (101) may be pulled off spindle assembly (102) and if this does occur, it can easily be replaced by sliding a new spindle cap down over the spindle and then pressing in on the detent portion, which acts as a stop to keep the spindle cap from sliding off. If breakage occurs other than loss of the spindle cap (101), the entire spindle assembly (102) must be replaced.

Spindle S- 19926

LEVELING THE RECORD CHANGER

It is essential to have the record changer absolutely level. Use either a torpedo or similar type level on the record changer base plate. Use adequate shims to level the record changer pan or the combination cabinet to achieve perfect level.

$\begin{aligned} & \text { DIAG. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { PART } \\ & \text { No. } \end{aligned}$	DESCRIPTION
A1	S-19918	Tone Arm
B1	141-129	Phono Motor
B1	141-131	Phono Motor (Exp. 50-60 Cyc.)
B1	141-132	Phono Motor (Alt. for 141-129)
C1	22-829	. 05 Mfd 200 V
C2	22-829	. 05 Mfd 200 V
C3	22-1775	. 047 Mfd
P1	58-213	2 Prong Plug
P2	58-212	Connector Plug
PL1	100-160	Neon Lamp - GE No. NE54
R1	63-1774	$100 \mathrm{Ohm} \quad 1 / 2 \mathrm{~W}$
R2	63-1849	$33 \mathrm{~K} \mathrm{Ohm} \quad 1 / 2 \mathrm{~W}$
R3	63-1849	$33 \mathrm{~K} \mathrm{Ohm} \quad 1 / 2 \mathrm{~W}$
S1	85-527	S.P.S.T. Switch
S1	85-482	S.P.S.T. Switch
S2	S-13913	Electro Magnet Assembly
S3	85-483	Phono Reject Switch
S4	S-16933	Trip Switch Assembly

NOTE: R2 A PLI NOT USED IN
MODELS S-14054 a S-14057

PLUG WIRING P2
FOK S-14056

PLUG WIRING FOR S-14054 FOR S-14057
\& $\mathrm{S}-14057$

2 OR C3
.047

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ZENITH Record Changers Models S-14053 to $S-14057$, continued

MOTOR AND MOUNTING MECHANISM

The motor (83) is shock mounted by the means of rubber \mid drive shaft and drive wheel (38). The drive wheel (38) is grommets (89) and fibre washers (90) to mounting plate and stud assembly (92). The entire motor (83) and motor mounting plate (92) revolve about motor mounting stud (88). The point at which motor mounting stud (88) passes through motor mounting plate should be well lubricated to allow free action of the motor. The motor drive shaft is kept in contact and in constant pressure with drive wheel assembly (38) by the means of motor tension spring (84). This insures the proper friction contact between the motor
firmly mounted in drive wheel bracket and bearing assembly and is pivoted on bearings at two points eliminating possible lateral motion. This reduces the possibility of WOWS. When the record changer is in shipment, the entire motor and bracket assembly (92), (83) is fastened to a second point by motor mounting screw (118). This eliminates the possibility of indentations forming in drive wheel (38) as a result of constant pressure and pounding of the motor drive shaft during shipment.

TURNTABLE S-19920

There is little possibility of any damage occurring to the turntable through normal usage. However it is possible that the turntable may be removed and dropped thus damaging the gear so that it will have to be replaced, in this case the entire turntable (100) should be replaced.

There is a possibility that the rubber turntable pad (99) may become damaged, if this occurs it can be replaced by removing the defective pad and glueing the new one on the turntable plate.

176

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ZENITH Record Changers Models S-14053 to S-14057, continued

TROUBLE SHOOTING

NEEDLE DOES NOT TRACK ACROSS RECORD PROPERLY

a. Clean foreign material from around needle.
b. Check needle to see if the tip is bent or broken. Replace needle.
c. Hinge bearing binds. Check lateral movement of tone arm. It must move freely without binding.
d. Excessive vibration while playing an LP record. Any vibration cause by (1) unsteady mounting, (2) floor vibration, or (3) passing of heavy vehicles may cause the pickup to glide across the record grooves.

MECHANISM STARTS SLOWLY AND MOTOR GETS HOT
a. Check line voltage and frequency.
b. Check lubrication.
c. Motor windings damaged.
d. Room temperature abnormally low.

MOTOR FAILS TO RUN EVEN WHEN IT IS DISCONNECTED FROM CHANGER AND PROPER VOLTAGE OF FREQUENCY APPLIED DIRECTLY TO THE TWO INPUT LEADS OF THE WINDING
a. Open windings.
b. Damaged or frozen bearings.
c. Lower rear support bracket bent. Remove and straighten bracket - re-center armature.

NEEDLE SETS DOWN PROPERLY ON RECORD BUT SLIDES OVER THE RECORD GROOVES
a. Cabinet tilted.
b. Badly worn or broken needle cartridge.

TONE ARM FALLS OFF RECORD

a. Check tone arm set-down adjustment.
b. Check tone arm pivot bracket.
c. Changer not level.

SQUEAKS OR NOISES DURING PLAYING OF RECORDS

a. Friction between the records on the turntable and the spindle will occasionally cause squeaks. A thin coat of wax applied to the spindle will remedy this condition.
b. Check lubrication.

RECORD IS NOT HEARD ALTHOUGH CHANGER OPERATES

a. See that the receiver is set for Phono.
b. Check receiver audio by listening to radio.
c. Check needle cartridge.
d. Check tone arm housing for broken leads.

RUMBLE, WOW AND MICROPHONICS DURING REPRODUCTION

a. Changer not "floated" properly. Remove packing strip. Loosen mounting bolts.
b. Motor leads pulled too tight preventing motor from "floating" freely.
c. Impression on idler wheel.
d. Check rubber motor shock mounts.
e. Check the motor drive shaft and be certain the plane of the shaft's diameter is parallel to the rubber surface of drive wheel assembly (38).

NEEDLE FAILS TO CLEAR MAXIMUM LOAD OF RECORDS ON THE TURNTABLE
a. Check tone arm height adjustment.

TONE ARM SETS DOWN TOO FAR IN OR OUT ON RECORD
a. Check tone arm set-down adjustment.

TONE ARM SET DOWN VARIES

a. Tone arm pivots loose.

CHANGER CONTINUES TO CYCLE

a. Check the trip switch adjustment.
b. Trip pawl sticks.

CHANGER WILL NOT CYCLE UPON COMPLE-

 TION OF RECORD.a. Be certain that the record has an eccentric center groove.
b. Check velocity trip mechanism.

CHATTER OF TRIP PAWL ASSEMBLY

a. Remove mounting bolt which fastens trip pawl assembly (74) to shoulder stud. Then load shoulder stud with Sta-Put Grease and replace and fasten trip pawl assembly.
ELECTRICAL NOISE WHEN TONE ARM IS MOVED
a. Stud on oscillating lever and stud assembly (3) should be covered with vinylite tubing to prevent contact with friction lever and weight assembly (68).
b. Friction lever (68) at its most outward swing may contact wire guide stud on changer base plate. Cover this stud with vinylite tubing.
FRICTION LEVER (68) FAILS TO MOVE WITH TONE ARM
a. Check felt washer (106) for proper friction surface. If worn, ref'ace.

LUBRICATION

Additional lubrication should not be required for the life of the changer, but in cases of unusual use or high operating temperatures the changer should be lubricated as follows:
All shoulder rivets which hold moving parts, all stud shoulder mounting points on which moving parts operate and all C washers should be lubricated with a few drops of fine instrument oil.

The other moving suriaces should be coated either with Sta-Put Grease or Sta-Put Oil as indicated in the following two illustrations. The purpose of using the extremely fine instrument oil is its ability to penetrate into the moving metal parts.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS Friner Ranco Comporambay

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ZENITH RADIO Model L 406, Chassis 4L42, continued on next page.

The 4 L 42 chassis is an AC, DC or battery operated superheterodyne. The chassis is isolated from the DC circuit, and all measurements must be made from a common negative point. The most convenient place to reach this negative point is the negative side or container of the electrolytic. When the change-over Switch $S 1$ is in $A C$ position, the $D C$ resistance from chassis to any circuit must be almost infinite. If an circuit becomes grounded a hum will result.

The I.F. transformers incorporated in this receiver are of the new permeability tuned type. The advantage of an I.F. transformer of this type is its extreme stability under various humidity and temperature conditions. The upper coil is the secondary and the lower the primary. When adjusting these I.F. transformers the tuning wrench 68-19 can be inserted into the top slug, rotated until maximum output is obtained and then dropped down to the lower slug and the same operation repented.
IF Alignment: Remove the chnssis from the cabinet and ar range the units so thet the wavemagnet can be connected. All the connections and adjustments can be made from the top of the chassis. Connect a signal generator, through a .1 mfd dummy antenna, to the converter grid and B-(common return). Connect an output meter across the voice coil
of the speaker. Set the signal generator to 455 Kc . and adjust Pri. \& Sec. of T1 \& T2 for the maximum indication on the output meter.
SW-RF Alginment: Set the generator to 16.1 mc ., open the gang and adjust trimmer CID for maximum output. Then close the gang, set the generator to 4.6 mc . and adjust L 3 for maximum output. Set the generator to 15.5 mc . and tune in the signal and rock gang, adjusting CLA for maximum signal Caution: Do not tune in the image which is 15.5 mc . plus $2 x$ the IF frequency.
BC RF Alignment: Connect a two turn loop across the leads of the signal generator, loosely couple this loop to the wavemagnet. Set the signal generator and the dial pointer of the receiver io 1620 Kc . and adjust $C 1 \mathrm{C}$ oscillator trimmer to resonance. Set the signal generator and dial pointer to 1400 and adjust C1B antenna trimmer to resonance.
Set the signal generator to 600 KC , turn the gang to approximately 600 KC , and then rock the gang and adjust, CIE trimmer for maximum output.
To track the BC band during final alignment the chassis must be installed in the cabinet, the Wavemagnet installed in the normal position and the battery pack placed on top of the cabnet to simulate actual operating conditions.

antenna hank
-A.C.CORD

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS
Zenimh Radio Corporation
MODEL L406
CHASSIS
4L42

For alignment information
 see preceding page.

DIAL CABLE DRAWING

ALIGNMENT PROCEDURE

OSCILLATOR $y=\frac{-2}{-201 L}$

Oper ation	Connect Osc. to	Dummy Ant.	$\begin{gathered} \text { Input } \\ \text { Sig.Freq } \end{gathered}$	Band	$\begin{gathered} \text { Set Dial } \\ \text { at } \end{gathered}$	Trimmer	Purpose
1	$\begin{aligned} & \text { Converter } \\ & \text { Grid } \end{aligned}$. 1 mfd .	455 Kc .	BC	600 Kc .	Align.Pri \& Sec. $T 1 \& T 2$	Align 1.F.
2	Antenna 8 Chassis	200 mmfd . in series with 400 ohm carbon resistor	16.1 Mc .	SW	Open Gang	CID	Set Osc. to Scale
3			4.6 Mc .	SW	Close Gang	L3	$\begin{aligned} & \text { Set Osc. to } \\ & \text { Scale } \end{aligned}$
4			15.5 Mc .	SW	$\begin{aligned} & \text { Rock at } \\ & 15.5 \mathrm{mc} . \end{aligned}$	C1A	Align SW
5	Two turns loosely coupled to Wavemagnet		1620 Kc .	BC	Open Gang	ClC	$\begin{aligned} & \text { Set Osc. to } \\ & \text { Scale } \end{aligned}$
6			1400 Kc .	BC	1400	C1B	Align Ant.
7			600 Kc .	BC	$\begin{aligned} & \text { Rock at } \\ & 600 \mathrm{kc} \text {. } \end{aligned}$	CIE	Set Padder

MANUAL OF 1953 MOST.OFTEN.NEEDED RADIO DIAGRAMS
KEATTM RADIOCORPORATMON
MODEL L505 CHASSIS SL41

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Zenici Radio Corponation

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS Zenith Radio Corporation

Model L721, Chassis 7L05 Alignment material on page 189, adjacent.

188

Model L721, Chassis 7L05
Continued from page 188.

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS Zenith Radio Corporation

Mode1s L845R, L846E \& L846 H
Chassis 8L21
Alignment information on page 191, adjacent at right.

190

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1953 MOST-OFTEN-NEEDED RADIO DIAGRAMS

[^0]: *Before making this adjustment check the mechanical setting of the oscillator core " H." The slotted end of core should be $1 \mathbf{1 s f}^{\prime \prime}$ " from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end of the coil form.) If adjustment is necessary, first dissolve the glyptal seal on the studs. Core adjustment should be made with an insulated screwdriver and core studs should be re-sealed in place with glyptal or household cement after alignment.
 **"L" is the pointer adjustment screw which is on the pointer connecting link (see tuner drawing) and should be adjusted so the pointer reads 1000 KC . (On first " 0 " of " 100 .")
 With the radio installed and the car antenna plugged in adjust the antenna trimmer " G " for maximum volume with the radio tuned to a weak station between 600 and 1000 KC . (See sticker on case.)
 \# To tune to high frequency, put a $0.070^{\prime \prime}$ feeler gauge (or bare \#13 wire) in slot against the high frequency stop. (See tuner pictures). Depress station selector bar and allow the planetary arm to run against the feeler gauge. Turn the radio off and then on.

[^1]: * On changers bearing numbers (located on tag on underside of mainplate) 375-245 or earlier: Do not order these parts. Replace entire hinge and shaft assembly - order improved part No. 21X344
 $\dagger 18-1$ X981-1E and 11X981-1LY for B123 and "123 respectively.
 \dagger 18A - 42P314-E and 42P314-LY for B123 and F123 respectively.

